Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2022-08-12Zeitschriftenartikel DOI: 10.3390/atmos13081282
Modelling Hourly Particulate Matter (PM10) Concentrations at High Spatial Resolution in Germany Using Land Use Regression and Open Data
Wallek, Stefan cc
Langner, Marcel cc
Schubert, Sebastian cc
Schneider, Christoph cc
Mathematisch-Naturwissenschaftliche Fakultät
Air pollution is a major health risk factor worldwide. Regular short- and long-time exposures to ambient particulate matter (PM) promote various diseases and can lead to premature death. Therefore, in Germany, air quality is assessed continuously at approximately 400 measurement sites. However, knowledge about this intermediate distribution is either unknown or lacks a high spatial–temporal resolution to accurately determine exposure since commonly used chemical transport models are resource intensive. In this study, we present a method that can provide information about the ambient PM concentration for all of Germany at high spatial (100 m × 100 m) and hourly resolutions based on freely available data. To do so we adopted and optimised a method that combined land use regression modelling with a geostatistical interpolation technique using ordinary kriging. The land use regression model was set up based on CORINE (Coordination of Information on the Environment) land cover data and the Germany National Emission Inventory. To test the model’s performance under different conditions, four distinct data sets were used. (1) From a total of 8760 (365 × 24) available h, 1500 were randomly selected. From those, the hourly mean concentrations at all stations (ca. 400) were used to run the model (n = 566,326). The leave-one-out cross-validation resulted in a mean absolute error (MAE) of 7.68 μg m−3 and a root mean square error (RMSE) of 11.20 μg m−3. (2) For a more detailed analysis of how the model performs when an above-average number of high values are modelled, we selected all hourly means from February 2011 (n = 256,606). In February, measured concentrations were much higher than in any other month, leading to a slightly higher MAE of 9.77 μg m−3 and RMSE of 14.36 μg m−3, respectively. (3) To enable better comparability with other studies, the annual mean concentration (n = 413) was modelled with a MAE of 4.82 μg m−3 and a RMSE of 6.08 μg m−3. (4) To verify the model’s capability of predicting the exceedance of the daily mean limit value, daily means were modelled for all days in February (n = 10,845). The exceedances of the daily mean limit value of 50 μg m−3 were predicted correctly in 88.67% of all cases. We show that modelling ambient PM concentrations can be performed at a high spatial–temporal resolution for large areas based on open data, land use regression modelling, and kriging, with overall convincing results. This approach offers new possibilities in the fields of exposure assessment, city planning, and governance since it allows more accurate views of ambient PM concentrations at the spatial–temporal resolution required for such assessments.
Files in this item
Thumbnail
atmosphere-13-01282-v2.pdf — Adobe PDF — 5.289 Mb
MD5: 104d6d3db0deffac954c48ba57360338
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/atmos13081282
Permanent URL
https://doi.org/10.3390/atmos13081282
HTML
<a href="https://doi.org/10.3390/atmos13081282">https://doi.org/10.3390/atmos13081282</a>