Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-06-14Zeitschriftenartikel DOI: 10.18452/25499
Climate-induced hysteresis of the tropical forest in a fire-enabled Earth system model
Drüke, Markus cc
von Bloh, Werner cc
Sakschewski, Boris cc
Wunderling, Nico cc
Petri, Stefan cc
Cardoso, Manoel cc
Barbosa, Henrique de Melo Jorge cc
Thonicke, Kirsten cc
Mathematisch-Naturwissenschaftliche Fakultät
Tropical rainforests are recognized as one of the terrestrial tipping elements which could have profound impacts on the global climate, once their vegetation has transitioned into savanna or grassland states. While several studies investigated the savannization of, e.g., the Amazon rainforest, few studies considered the influence of fire. Fire is expected to potentially shift the savanna-forest boundary and hence impact the dynamical equilibrium between these two possible vegetation states under changing climate. To investigate the climate-induced hysteresis in pan-tropical forests and the impact of fire under future climate conditions, we employed the Earth system model CM2Mc, which is biophysically coupled to the fire-enabled state-of-the-art dynamic global vegetation model LPJmL. We conducted several simulation experiments where atmospheric CO2 concentrations increased (impact phase) and decreased from the new state (recovery phase), each with and without enabling wildfires. We find a hysteresis of the biomass and vegetation cover in tropical forest systems, with a strong regional heterogeneity. After biomass loss along increasing atmospheric CO2 concentrations and accompanied mean surface temperature increase of about 4 ◦C (impact phase), the system does not recover completely into its original state on its return path, even though atmospheric CO2 concentrations return to their original state. While not detecting large-scale tipping points, our results show a climate-induced hysteresis in tropical forest and lagged responses in forest recovery after the climate has returned to its original state. Wildfires slightly widen the climate-induced hysteresis in tropical forests and lead to a lagged response in forest recovery by ca. 30 years.
Files in this item
Thumbnail
s11734-021-00157-2.pdf — Adobe PDF — 1.313 Mb
MD5: 52360d1539509eba3ce61efbd9fdd3d5
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/25499
Permanent URL
https://doi.org/10.18452/25499
HTML
<a href="https://doi.org/10.18452/25499">https://doi.org/10.18452/25499</a>