Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2023-01-02Kumulative Dissertation DOI: 10.18452/25434
Arithmetic aspects of period maps and their special subvarieties
Kreutz, Tobias
Mathematisch-Naturwissenschaftliche Fakultät
Diese Dissertation behandelt arithmetische Eigenschaften von Familien algebraischer Varietäten und deren speziellen Untervarietäten. Im ersten Kapitel definieren wir sogenannte absolut spezielle Untervarietäten mithilfe von Delignes Begriff der absoluten Hodgeklassen. Ausgehend von der Vermutung, dass alle Hodgeklassen absolute Hodgeklassen sind, erwarten wir, dass alle speziellen Untervarietäten absolut speziell sind. Wir beweisen diese Erwartung für Untervarietäten, die eine bestimmte Monodromiebedingung erfüllen. Das zweite Kapitel führt eine l-adische Version von speziellen Untervarietäten ein, die wir l-Galois spezielle Untervarietäten nennen. Wir studieren bewiesene und vermutete Eigenschaften dieser Untervarietäten und deren Zusammenhang zur Struktur des l-Galois exzeptionellen Locus und zur Mumford-Tate Vermutung. Im dritten Kapitel beweisen wir eine Rapoport-Zink Uniformisierung für den Modulraum der primitiv polarisierten K3 Flächen und kubischen Vierfaltigkeiten mit supersingulärer Reduktion. In beiden Fällen ist der Modulraum uniformisiert von einer explizit definierten rigid analytischen Untervarietät einer lokalen Shimura-Varietät von orthogonalem Typ.
 
This thesis studies arithmetic aspects of families of algebraic varieties and their special subvarieties. In the first part, we use Deligne's framework of absolute Hodge classes to define a notion of absolutely special subvarieties. The conjecture that all Hodge classes are absolute Hodge predicts that every special subvariety is absolutely special. We prove this prediction for subvarieties satisfying a certain monodromy condition. The second part introduces an l-adic analog of special subvarieties that we call l-Galois special subvarieties. We study the properties of these subvarieties and discuss how known and unknown properties of l-Galois special subvarieties are related to the structure of the l-Galois exceptional locus and to the Mumford-Tate conjecture. In the third chapter, we prove a Rapoport-Zink type uniformization result for the moduli space of polarized K3 surfaces and cubic fourfolds. We show that in both cases, the tube over the supersingular locus of the moduli space is uniformized by an explicitly described rigid analytic open subvariety of a local Shimura variety of orthogonal type.
 
Files in this item
Thumbnail
dissertation_kreutz_tobias.pdf — Adobe PDF — 941.9 Kb
MD5: e76d3a15be71e3c14e8e97f49feeccf0
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/25434
Permanent URL
https://doi.org/10.18452/25434
HTML
<a href="https://doi.org/10.18452/25434">https://doi.org/10.18452/25434</a>