Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2022-03-03Zeitschriftenartikel DOI: 10.18452/25874
A consistent picture of excitations in cubic BaSnO3 revealed by combining theory and experiment
Aggoune, Wahib
Eljarrat, Alberto
Nabok, Dmitrii cc
Irmscher, Klaus cc
Zupancic, Martina
Galazka, Zbigniew cc
Albrecht, Martin
Koch, Christoph cc
Draxl, Claudia cc
Mathematisch-Naturwissenschaftliche Fakultät
Among the transparent conducting oxides, the perovskite barium stannate is most promising for various electronic applications due to its outstanding carrier mobility achieved at room temperature. However, most of its important characteristics, such as band gaps, effective masses, and absorption edge, remain controversial. Here, we provide a fully consistent picture by combining state-of-the-art ab initio methodology with forefront electron energy-loss spectroscopy and optical absorption measurements. Valence electron energy-loss spectra, featuring signals originating from band gap transitions, are acquired on defect-free sample regions of a BaSnO3 single crystal. These high-energy-resolution measurements are able to capture also very weak excitations below the optical gap, attributed to indirect transitions. By temperature-dependent optical absorption measurements, we assess band-gap renormalization effects induced by electron-phonon coupling. Overall, we find for the effective electronic mass, the direct and the indirect gap, the optical gap, as well as the absorption onsets and spectra, excellent agreement between both experimental techniques and the theoretical many-body results, supporting also the picture of a phonon-mediated mechanism where indirect transitions are activated by phonon-induced symmetry lowering. This work demonstrates a fruitful connection between different high-level theoretical and experimental methods for exploring the characteristics of advanced materials.
Files in this item
Thumbnail
s43246-022-00234-6.pdf — Adobe PDF — 2.786 Mb
MD5: 1c846ce18323dee684675b07321b626d
Notes
This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/25874
Permanent URL
https://doi.org/10.18452/25874
HTML
<a href="https://doi.org/10.18452/25874">https://doi.org/10.18452/25874</a>