Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2023-01-19Dissertation DOI: 10.18452/25818
High-order renormalization of scalar quantum fields
Balduf, Paul-Hermann cc
Mathematisch-Naturwissenschaftliche Fakultät
Thema dieser Dissertation ist die Renormierung von perturbativer skalarer Quantenfeldtheorie bei großer Schleifenzahl. Der Hauptteil der Arbeit ist dem Einfluss von Renormierungsbedingungen auf renormierte Greenfunktionen gewidmet. Zunächst studieren wir Dyson-Schwinger-Gleichungen und die Renormierungsgruppe, inklusive der Gegenterme in dimensionaler Regularisierung. Anhand zahlreicher Beispiele illustrieren wir die verschiedenen Größen. Alsdann diskutieren wir, welche Freiheitsgrade ein Renormierungsschema hat und wie diese mit den Gegentermen und den renormierten Greenfunktionen zusammenhängen. Für ungekoppelte Dyson-Schwinger-Gleichungen stellen wir fest, dass alle Renormierungsschemata bis auf eine Verschiebung des Renormierungspunktes äquivalent sind. Die Verschiebung zwischen kinematischer Renormierung und Minimaler Subtraktion ist eine Funktion der Kopplung und des Regularisierungsparameters. Wir leiten eine neuartige Formel für den Fall einer linearen Dyson-Schwinger Gleichung vom Propagatortyp her, um die Verschiebung direkt aus der Mellintransformation des Integrationskerns zu berechnen. Schließlich berechnen wir obige Verschiebung störungstheoretisch für drei beispielhafte nichtlineare Dyson-Schwinger-Gleichungen und untersuchen das asymptotische Verhalten der Reihenkoeffizienten. Ein zweites Thema der vorliegenden Arbeit sind Diffeomorphismen der Feldvariable in einer Quantenfeldtheorie. Wir präsentieren eine Störungstheorie des Diffeomorphismusfeldes im Impulsraum und verifizieren, dass der Diffeomorphismus keinen Einfluss auf messbare Größen hat. Weiterhin untersuchen wir die Divergenzen des Diffeomorphismusfeldes und stellen fest, dass die Divergenzen Wardidentitäten erfüllen, die die Abwesenheit dieser Terme von der S-Matrix ausdrücken. Trotz der Wardidentitäten bleiben unendlich viele Divergenzen unbestimmt. Den Abschluss bildet ein Kommentar über die numerische Quadratur von Periodenintegralen.
 
This thesis concerns the renormalization of perturbative quantum field theory. More precisely, we examine scalar quantum fields at high loop order. The bulk of the thesis is devoted to the influence of renormalization conditions on the renormalized Green functions. Firstly, we perform a detailed review of Dyson-Schwinger equations and the renormalization group, including the counterterms in dimensional regularization. Using numerous examples, we illustrate how the various quantities are computable in a concrete case and which relations they satisfy. Secondly, we discuss which degrees of freedom are present in a renormalization scheme, and how they are related to counterterms and renormalized Green functions. We establish that, in the case of an un-coupled Dyson-Schwinger equation, all renormalization schemes are equivalent up to a shift in the renormalization point. The shift between kinematic renormalization and Minimal Subtraction is a function of the coupling and the regularization parameter. We derive a novel formula for the case of a linear propagator-type Dyson-Schwinger equation to compute the shift directly from the Mellin transform of the kernel. Thirdly, we compute the shift perturbatively for three examples of non-linear Dyson-Schwinger equations and examine the asymptotic growth of series coefficients. A second, smaller topic of the present thesis are diffeomorphisms of the field variable in a quantum field theory. We present the perturbation theory of the diffeomorphism field in momentum space and find that the diffeomorphism has no influence on measurable quantities. Moreover, we study the divergences in the diffeomorphism field and establish that they satisfy Ward identities, which ensure their absence from the S-matrix. Nevertheless, the Ward identities leave infinitely many divergences unspecified and the diffeomorphism theory is perturbatively unrenormalizable. Finally, we remark on a third topic, the numerical quadrature of Feynman periods.
 
Files in this item
Thumbnail
dissertation_balduf_paul-hermann.pdf — Adobe PDF — 8.236 Mb
MD5: e3908ed99766f5daa17ecf6a59f6ffeb
Cite
BibTeX
EndNote
RIS
(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/25818
Permanent URL
https://doi.org/10.18452/25818
HTML
<a href="https://doi.org/10.18452/25818">https://doi.org/10.18452/25818</a>