Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-06-04Zeitschriftenartikel DOI: 10.18452/25922
Hopf Bifurcation for General 1D Semilinear Wave Equations with Delay
Kmit, Irina cc
Recke, Lutz
Mathematisch-Naturwissenschaftliche Fakultät
We consider boundary value problems for 1D autonomous damped and delayed semilinear wave equations of the type ∂2tu(t,x)−a(x,λ)2∂2xu(t,x)=b(x,λ,u(t,x),u(t−τ,x),∂tu(t,x),∂xu(t,x)),x∈(0,1) with smooth coefficient functions a and b such that a(x,λ)>0 and b(x,λ,0,0,0,0)=0 for all x and λ. We state conditions ensuring Hopf bifurcation, i.e., existence, local uniqueness (up to time shifts), regularity (with respect to t and x) and smooth dependence (on τ and λ) of small non-stationary time-periodic solutions, which bifurcate from the stationary solution u=0 , and we derive a formula which determines the bifurcation direction with respect to the bifurcation parameter τ . To this end, we transform the wave equation into a system of partial integral equations by means of integration along characteristics and then apply a Lyapunov-Schmidt procedure and a generalized implicit function theorem. The main technical difficulties, which have to be managed, are typical for hyperbolic PDEs (with or without delay): small divisors and the “loss of derivatives” property. We do not use any properties of the corresponding initial-boundary value problem. In particular, our results are true also for negative delays τ.
Files in this item
Thumbnail
s10884-021-10009-1.pdf — Adobe PDF — 563.7 Kb
MD5: 435dce9c39145e7b491861baf033358d
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/25922
Permanent URL
https://doi.org/10.18452/25922
HTML
<a href="https://doi.org/10.18452/25922">https://doi.org/10.18452/25922</a>