Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2022-12-21Zeitschriftenartikel DOI: 10.1088/2515-7639/aca935
Modeling the electronic structure of organic materials: a solid-state physicist’s perspective
Cocchi, Caterina cc
Guerrini, Michele cc
Krumland, Jannis
Trung Nguyen, Ngoc
Valencia, Ana M cc
Mathematisch-Naturwissenschaftliche Fakultät
Modeling the electronic and optical properties of organic semiconductors remains a challenge for theory, despite the remarkable progress achieved in the last three decades. The complexity of these systems, including structural (dis)order and the still debated doping mechanisms, has been engaging theorists with different background. Regardless of the common interest across the various communities active in this field, these efforts have not led so far to a truly interdisciplinary research. In the attempt to move further in this direction, we present our perspective as solid-state theorists for the study of molecular materials in different states of matter, ranging from gas-phase compounds to crystalline samples. Considering exemplary systems belonging to the well-known families of oligo-acenes and -thiophenes, we provide a quantitative description of electronic properties and optical excitations obtained with state-of-the-art first-principles methods such as density-functional theory and many-body perturbation theory. Simulating the systems as gas-phase molecules, clusters, and periodic lattices, we are able to identify short- and long-range effects in their electronic structure. While the latter are usually dominant in organic crystals, the former play an important role, too, especially in the case of donor/accepetor complexes. To mitigate the numerical complexity of fully atomistic calculations on organic crystals, we demonstrate the viability of implicit schemes to evaluate band gaps of molecules embedded in isotropic and even anisotropic environments, in quantitative agreement with experiments. In the context of doped organic semiconductors, we show how the crystalline packing enhances the favorable characteristics of these systems for opto-electronic applications. The counter-intuitive behavior predicted for their electronic and optical properties is deciphered with the aid of a tight-binding model, which represents a connection to the most common approaches to evaluate transport properties in these materials.
Files in this item
Thumbnail
jpmater_6_1_012001.pdf — Adobe PDF — 1.960 Mb
MD5: 29b920e3bcdf57c1eb555768cc84efba
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/2515-7639/aca935
Permanent URL
https://doi.org/10.1088/2515-7639/aca935
HTML
<a href="https://doi.org/10.1088/2515-7639/aca935">https://doi.org/10.1088/2515-7639/aca935</a>