Show simple item record

2022-12-21Zeitschriftenartikel DOI: 10.18452/25928
Modeling the electronic structure of organic materials: a solid-state physicist’s perspective
dc.contributor.authorCocchi, Caterina
dc.contributor.authorGuerrini, Michele
dc.contributor.authorKrumland, Jannis
dc.contributor.authorTrung Nguyen, Ngoc
dc.contributor.authorValencia, Ana M
dc.date.accessioned2023-01-24T11:05:40Z
dc.date.available2023-01-24T11:05:40Z
dc.date.issued2022-12-21none
dc.date.updated2023-01-16T09:13:33Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/26624
dc.description.abstractModeling the electronic and optical properties of organic semiconductors remains a challenge for theory, despite the remarkable progress achieved in the last three decades. The complexity of these systems, including structural (dis)order and the still debated doping mechanisms, has been engaging theorists with different background. Regardless of the common interest across the various communities active in this field, these efforts have not led so far to a truly interdisciplinary research. In the attempt to move further in this direction, we present our perspective as solid-state theorists for the study of molecular materials in different states of matter, ranging from gas-phase compounds to crystalline samples. Considering exemplary systems belonging to the well-known families of oligo-acenes and -thiophenes, we provide a quantitative description of electronic properties and optical excitations obtained with state-of-the-art first-principles methods such as density-functional theory and many-body perturbation theory. Simulating the systems as gas-phase molecules, clusters, and periodic lattices, we are able to identify short- and long-range effects in their electronic structure. While the latter are usually dominant in organic crystals, the former play an important role, too, especially in the case of donor/accepetor complexes. To mitigate the numerical complexity of fully atomistic calculations on organic crystals, we demonstrate the viability of implicit schemes to evaluate band gaps of molecules embedded in isotropic and even anisotropic environments, in quantitative agreement with experiments. In the context of doped organic semiconductors, we show how the crystalline packing enhances the favorable characteristics of these systems for opto-electronic applications. The counter-intuitive behavior predicted for their electronic and optical properties is deciphered with the aid of a tight-binding model, which represents a connection to the most common approaches to evaluate transport properties in these materials.eng
dc.description.sponsorshipBundesministerium für Bildung und Forschunghttp://dx.doi.org/10.13039/501100002347
dc.description.sponsorshipDeutsche Forschungsgemeinschafthttp://dx.doi.org/10.13039/501100001659
dc.description.sponsorshipNiedersächsisches Ministerium für Wissenschaft und Kulturhttp://dx.doi.org/10.13039/501100010570
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectorganic semiconductorseng
dc.subjectdensity-functional theoryeng
dc.subjectmany-body perturbation theoryeng
dc.subjectpolarizable continuum modeleng
dc.subjectdonor/acceptor complexeseng
dc.subject.ddc530 Physiknone
dc.titleModeling the electronic structure of organic materials: a solid-state physicist’s perspectivenone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/26624-2
dc.identifier.doihttp://dx.doi.org/10.18452/25928
dc.type.versionpublishedVersionnone
local.edoc.pages22none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn2515-7639
dcterms.bibliographicCitation.doi10.1088/2515-7639/aca935none
dcterms.bibliographicCitation.journaltitleJPhys materialsnone
dcterms.bibliographicCitation.volume6none
dcterms.bibliographicCitation.issue1none
dcterms.bibliographicCitation.articlenumber012001none
dcterms.bibliographicCitation.originalpublishernameIOP Publishingnone
dcterms.bibliographicCitation.originalpublisherplaceBristolnone
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record