Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2022-05-26Zeitschriftenartikel DOI: 10.1002/adfm.202202892
Evaluation of Entropy-Stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O Oxides Produced via Solvothermal Method or Electrospinning as Anodes in Lithium-Ion Batteries
Triolo, Claudia cc
Xu, Wenlei
Petrovičovà, Beatrix
Pinna, Nicola cc
Santangelo, Saveria cc
Mathematisch-Naturwissenschaftliche Fakultät
Entropy‐stabilized oxides (ESOs), such as (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, have recently gained significant interest as novel anodes for lithium‐ion batteries (LIBs) due to their stable crystal structure and robust lithium‐storage properties. In this work, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides with different morphologies are prepared by electrospinning and solvothermal method and are applied as anode active materials for LIBs. It is found that different morphologies possess different characteristics, namely particle size, particle size range, and defect density, which have a significant effect on the electrochemical behavior. The most active (Mg, Co, Ni, Cu, Zn) ESO shows outstanding electrochemical properties in terms of high reversible capacity (480 mAh g–1 at 20 mA g–1), superior rate capability (206 mAh g–1 at 2 A g–1), and excellent cycling stability (390 mAh g–1 at 500 mA g–1 after 300 cycles). The strategy demonstrates the importance of engineering microstructures in tailoring the electrochemical performance.
 
Entropy‐stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides with different particle size, particle size range, and defect density are prepared by electrospinning and solvothermal method and tested as anode active materials for lithium‐ion batteries. The most active (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxide shows high reversible capacity, superior rate capability, and excellent cycling stability. image
 
Files in this item
Thumbnail
ADFM_ADFM202202892.pdf — Adobe PDF — 2.438 Mb
MD5: a66667d60a05b54b206bc211e7246e59
Cite
BibTeX
EndNote
RIS
(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1002/adfm.202202892
Permanent URL
https://doi.org/10.1002/adfm.202202892
HTML
<a href="https://doi.org/10.1002/adfm.202202892">https://doi.org/10.1002/adfm.202202892</a>