Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2023-03-02Kumulative Dissertation DOI: 10.18452/25936
Dimension Flexible and Adaptive Statistical Learning
Khowaja, Kainat cc
Wirtschaftswissenschaftliche Fakultät
Als interdisziplinäre Forschung verbindet diese Arbeit statistisches Lernen mit aktuellen fortschrittlichen Methoden, um mit hochdimensionalität und Nichtstationarität umzugehen. Kapitel 2 stellt Werkzeuge zur Verfügung, um statistische Schlüsse auf die Parameterfunktionen von Generalized Random Forests zu ziehen, die als Lösung der lokalen Momentenbedingung identifiziert wurden. Dies geschieht entweder durch die hochdimensionale Gaußsche Approximationstheorie oder durch Multiplier-Bootstrap. Die theoretischen Aspekte dieser beiden Ansätze werden neben umfangreichen Simulationen und realen Anwendungen im Detail diskutiert. In Kapitel 3 wird der lokal parametrische Ansatz auf zeitvariable Poisson-Prozesse ausgeweitet, um ein Instrument zur Ermittlung von Homogenitätsintervallen innerhalb der Zeitreihen von Zähldaten in einem nichtstationären Umfeld bereitzustellen. Die Methodik beinhaltet rekursive Likelihood-Ratio-Tests und hat ein Maximum in der Teststatistik mit unbekannter Verteilung. Um sie zu approximieren und den kritischen Wert zu finden, verwenden wir den Multiplier-Bootstrap und demonstrieren den Nutzen dieses Algorithmus für deutsche M\&A Daten. Kapitel 4 befasst sich mit der Erstellung einer niedrigdimensionalen Approximation von hochdimensionalen Daten aus dynamischen Systemen. Mithilfe der Resampling-Methoden, der Hauptkomponentenanalyse und Interpolationstechniken konstruieren wir reduzierte dimensionale Ersatzmodelle, die im Vergleich zu den ursprünglichen hochauflösenden Modellen schnellere Ausgaben liefern. In Kapitel 5 versuchen wir, die Verteilungsmerkmale von Kryptowährungen mit den von ihnen zugrunde liegenden Mechanismen zu verknüpfen. Wir verwenden charakteristikbasiertes spektrales Clustering, um Kryptowährungen mit ähnlichem Verhalten in Bezug auf Preis, Blockzeit und Blockgröße zu clustern, und untersuchen diese Cluster, um gemeinsame Mechanismen zwischen verschiedenen Krypto-Clustern zu finden.
 
As an interdisciplinary research, this thesis couples statistical learning with current advanced methods to deal with high dimensionality and nonstationarity. Chapter 2 provides tools to make statistical inference (uniformly over covariate space) on the parameter functions from Generalized Random Forests identified as the solution of the local moment condition. This is done by either highdimensional Gaussian approximation theorem or via multiplier bootstrap. The theoretical aspects of both of these approaches are discussed in detail alongside extensive simulations and real life applications. In Chapter 3, we extend the local parametric approach to time varying Poisson processes, providing a tool to find intervals of homogeneity within the time series of count data in a nonstationary setting. The methodology involves recursive likelihood ratio tests and has a maxima in test statistic with unknown distribution. To approximate it and find the critical value, we use multiplier bootstrap and demonstrate the utility of this algorithm on German M\&A data. Chapter 4 is concerned with creating low dimensional approximation of high dimensional data from dynamical systems. Using various resampling methods, Principle Component Analysis, and interpolation techniques, we construct reduced dimensional surrogate models that provide faster responses as compared to the original high fidelity models. In Chapter 5, we aim to link the distributional characteristics of cryptocurrencies to their underlying mechanism. We use characteristic based spectral clustering to cluster cryptos with similar behaviour in terms of price, block time, and block size, and scrutinize these clusters to find common mechanisms between various crypto clusters.
 
Files in this item
Thumbnail
dissertation_khowaja_kainat.pdf — Adobe PDF — 16.64 Mb
MD5: a57edfcc273b25364162a85a93401d59
References
Has Part: https://doi.org/10.6293/AQAFA.202112_(18).0006
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/25936
Permanent URL
https://doi.org/10.18452/25936
HTML
<a href="https://doi.org/10.18452/25936">https://doi.org/10.18452/25936</a>