Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-09-20Zeitschriftenartikel DOI: 10.18452/26126
Integration of a Building Energy Model in an Urban Climate Model and its Application
Jin, Luxi cc
Schubert, Sebastian cc
Fenner, Daniel cc
Meier, Fred cc
Schneider, Christoph cc
Mathematisch-Naturwissenschaftliche Fakultät
We report the ability of an urban canopy model, coupled with a regional climate model, to simulate energy fluxes, the intra-urban variability of air temperature, urban-heat-island characteristics, indoor temperature variation, as well as anthropogenic heat emissions, in Berlin, Germany. A building energy model is implemented into the Double Canyon Effect Parametrization, which is coupled with the mesoscale climate model COSMO-CLM (COnsortium for Small-scale MOdelling in CLimate Mode) and takes into account heat generation within buildings and calculates the heat transfer between buildings and the urban atmosphere. The enhanced coupled urban model is applied in two simulations of 24-day duration for a winter and a summer period in 2018 in Berlin, using downscaled reanalysis data to a final grid spacing of 1 km. Model results are evaluated with observations of radiative and turbulent energy fluxes, 2-m air temperature, and indoor air temperature. The evaluation indicates that the improved model reproduces the diurnal characteristics of the observed turbulent heat fluxes, and considerably improves the simulated 2-m air temperature and urban heat island in winter, compared with the simulation without the building energy model. Our set-up also estimates the spatio–temporal variation of wintertime energy consumption due to heating with canyon geometry. The potential to save energy due to the urban heat island only becomes evident when comparing a suburban site with an urban site after applying the same grid-cell values for building and street widths. In summer, the model realistically reproduces the indoor air temperature and its temporal variation.
Files in this item
Thumbnail
s10546-020-00569-y.pdf — Adobe PDF — 1.836 Mb
MD5: d440a9e2da8d43071d8e710dff131474
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/26126
Permanent URL
https://doi.org/10.18452/26126
HTML
<a href="https://doi.org/10.18452/26126">https://doi.org/10.18452/26126</a>