Coherent Raman Control and On-Chip Integration of the Nitrogen-Vacancy Center in Diamond
Mathematisch-Naturwissenschaftliche Fakultät
Die im Rahmen dieser Arbeit durchgeführten Experimente befassen sich mit zwei Aspekten des Stickstoff-Fehlstellen-Zentrum (engl.: nitrogen-vacancy center, NV-Zentrum) in Diamant, einem der bekanntesten Quantenspin-Defekte und vielversprechendem Festkörpersystem für künftige Anwendungen in der Quantentechnologie, wie z. B. Quantensensorik und Quanteninformation im Nanomaßstab. Zum einen werden neue Mikrowellen-Raman-Spin-Manipulationsverfahren an dem NV-Elektronenspin untersucht, und zum anderen wird eine neuartige On-Chip-Plattform für Quantenanwendungen und die hybride Integration dieser Plattform mit einem einzelnen NV-Zentrum vorgestellt.
Es wird über die kohärente Mikrowellen-Raman-Kontrolle an den Elektronenspin des NV-Zentrums berichtet, die den Dipol-verbotenen Übergang zwischen zwei Spin-Subniveaus im elektronischen Triplett-Grundzustand des NV-Zentrums direkt treiben kann. Folglich wurden die stimulierten Raman-Übergänge (engl.: stimulated Raman transitions, SRT) und die stimulierte adiabatische Raman-Passage (engl.: stimulated Raman adiabatic passage, STIRAP) theoretisch und numerisch analysiert und erfolgreich an einem einzelnen NV-Zentrum experimentell verifiziert und umgesetzt.
Weiterhin wird die deterministische Integration eines einzelnen NV-Zentrums mit einer photonischen Plattform behandelt. Diese extra für diesen Zweck entwickelte photonische Plattform besteht dabei ausschließlich aus thermisch auf einem Silizium Substrat gewachsenem Siliziumdioxid und zeichnet sich dabei durch ihre ultraniedrige Fluoreszenz aus. Experimentell wurde die
Integration eines vorselektierten NV-Emitters mit einem Rasterkraftmikroskop durchgeführt und die On-Chip-Anregung des Quantenemitters sowie die Kopplung von Einzelphotonen an die geführte Mode der integrierten Struktur nachgewiesen. Dieser Ansatz zeigt das Potenzial dieser Plattform als robuste nanoskalige Schnittstelle von photonischen On-Chip-Strukturen
mit einzelnen Festkörper-Qubits. This thesis revolves around the nitrogen-vacancy (NV) defect center in diamond, one of the best-known quantum spin defects and a promising solid-state system for future applications in quantum technology, such as nanoscale quantum sensing and quantum information.
Since the manipulation of the NV center's electron spin is crucial for many applications, the development of new or the adaption of known spin manipulation schemes to the NV center spin is crucial to expand the application prospects of the NV center. Thus, this work reports on the adaption of coherent microwave Raman control to the electron spin of the NV center, which can drive the dipole-forbidden transition between two spin sublevels in the NV center's triplet electronic ground state. Consequently, the stimulated Raman transitions (SRT) and stimulated Raman adiabatic passage (STIRAP) two-photon microwave Raman processes were theoretically and numerically analyzed and successfully implemented and verified experimentally on a single NV center electron spin. The two Raman schemes were then also compared in terms of their robustness and success of the spin swap.
Apart from this, scalable on-chip coupling of single photon emitters and quantum memories with single optical modes is crucial for building future fully integrated nanophotonic devices. Thus, a purpose-built photonic platform consisting entirely of silicon dioxide thermally grown on a silicon substrate, which stands out by its ultra-low fluorescence, was developed. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope, and on-chip excitation of the quantum emitter as well as coupling of single photons to the guided mode of the integrated structure could be demonstrated. This approach demonstrates the potential of this platform as a robust nanoscale interface of on-chip photonic structures with single solid-state qubits.
Files in this item