Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2023-02-28Zeitschriftenartikel DOI: 10.3390/catal13030505
Mesostructured γ-Al2O3-Based Bifunctional Catalysts for Direct Synthesis of Dimethyl Ether from CO2
Secci, Fausto cc
Sanna Angotzi, Marco cc
Mameli, Valentina cc
Lai, Sarah cc
Russo, Patrícia A. cc
Pinna, Nicola cc
Mureddu, Mauro
Rombi, Elisabetta
Cannas, Carla cc
Mathematisch-Naturwissenschaftliche Fakultät
In this work, we propose two bifunctional nanocomposite catalysts based on acidic mesostructured γ-Al2O3 and a Cu/ZnO/ZrO2 redox phase. γ-Al2O3 was synthesized by an Evaporation-Induced Self-Assembly (EISA) method using two different templating agents (block copolymers Pluronic P123 and F127) and subsequently functionalized with the redox phase using an impregnation method modified with a self-combustion reaction. These nanocomposite catalysts and their corresponding mesostructured supports were characterized in terms of structural, textural, and morphological features as well as their acidic properties. The bifunctional catalysts were tested for the CO2-to-DME process, and their performances were compared with a physical mixture consisting of the most promising support as a dehydration catalyst together with the most common Cu-based commercial redox catalyst (CZA). The results highlight that the most appropriate Pluronic for the synthesis of γ-Al2O3 is P123; the use of this templating agent allows us to obtain a mesostructure with a smaller pore size and a higher number of acid sites. Furthermore, the corresponding composite catalyst shows a better dispersion of the redox phase and, consequently, a higher CO2 conversion. However, the incorporation of the redox phase into the porous structure of the acidic support (chemical mixing), favoring an intimate contact between the two phases, has detrimental effects on the dehydration performances due to the coverage of the acid sites with the redox nanophase. On the other hand, the strategy involving the physical mixing of the two phases, distinctly preserving the two catalytic functions, assures better performances.
Files in this item
Thumbnail
catalysts-13-00505-v3.pdf — Adobe PDF — 4.277 Mb
MD5: 3a9517ccc17ddc8b5059ab510b5e61c3
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/catal13030505
Permanent URL
https://doi.org/10.3390/catal13030505
HTML
<a href="https://doi.org/10.3390/catal13030505">https://doi.org/10.3390/catal13030505</a>