Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2022-11-04Zeitschriftenartikel DOI: 10.3390/pr10112291
Machine Learning-Based Approach for Modeling the Nanofluid Flow in a Solar Thermal Panel in the Presence of Phase Change Materials
Alqaed, Saeed cc
Mustafa, Jawed cc
Almehmadi, Fahad cc
Alharthi, Mathkar A.
Sharifpur, Mohsen cc
Cheraghian, Goshtasp
Mathematisch-Naturwissenschaftliche Fakultät
Considering the importance of environmental protection and renewable energy resources, particularly solar energy, the present study investigates the temperature control of a solar panel using a nanofluid (NFD) flow with eco-friendly nanoparticles (NPs) and a phase change material (PCM). The PCM was used under the solar panel, and the NFD flowed through pipes within the PCM. A number of straight fins (three fins) were exploited on the pipes, and the output flow temperature, heat transfer (HTR) coefficient, and melted PCM volume fraction were measured for different pipe diameters (D_Pipe) from 4 mm to 8 mm at various time points (from 0 to 100 min). Additionally, with the use of artificial intelligence and machine learning, the best conditions for obtaining the lowest panel temperature and the highest output NFD temperature at the lowest pressure drop have been determined. While the porosity approach was used to model the PCM melt front, a two-phase mixture was used to simulate NFD flow. It was discovered that the solar panel temperature and output temperature both increased considerably between t = 0 and t = 10 min before beginning to rise at varying rates, depending on the D_Pipe. The HTR coefficient increased over time, showing similar behavior to the panel temperature. The entire PCM melted within a short time for D_Pipes of 4 and 6 mm, while a large fraction of the PCM remained un-melted for a long time for a D_Pipe of 8 mm. An increase in D_Pipe, particularly from 4 to 6 mm, reduced the maximum and average panel temperatures, leading to a lower output flow temperature. Furthermore, the increased D_Pipe reduced the HTR coefficient, with the PCM remaining un-melted for a longer time under the panel.
Files in this item
Thumbnail
processes-10-02291.pdf — Adobe PDF — 5.616 Mb
MD5: 793b4d172f3f7a3e1af01004f9910ce2
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/pr10112291
Permanent URL
https://doi.org/10.3390/pr10112291
HTML
<a href="https://doi.org/10.3390/pr10112291">https://doi.org/10.3390/pr10112291</a>