Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-09-09Zeitschriftenartikel DOI: 10.1111/geb.13179
Global root traits (GRooT) database
Guerrero‐Ramírez, Nathaly R.
Mommer, Liesje
Freschet, Grégoire T.
Iversen, Colleen M.
McCormack, M. Luke
Kattge, Jens
Poorter, Hendrik
van der Plas, Fons
Bergmann, Joana
Kuyper, Thom W.
York, Larry M.
Bruelheide, Helge
Laughlin, Daniel C.
Meier, Ina C.
Roumet, Catherine
Semchenko, Marina
Sweeney, Christopher J.
van Ruijven, Jasper
Valverde‐Barrantes, Oscar J.
Aubin, Isabelle
Catford, Jane A.
Manning, Peter
Martin, Adam
Milla, Rubén
Minden, Vanessa
Pausas, Juli G.
Smith, Stuart W.
Soudzilovskaia, Nadejda A.
Ammer, Christian
Butterfield, Bradley
Craine, Joseph
Cornelissen, Johannes H. C.
de Vries, Franciska T.
Isaac, Marney E.
Kramer, Koen
König, Christian cc
Lamb, Eric G.
Onipchenko, Vladimir G.
Peñuelas, Josep
Reich, Peter B.
Rillig, Matthias C.
Sack, Lawren
Shipley, Bill
Tedersoo, Leho
Valladares, Fernando
van Bodegom, Peter
Weigelt, Patrick
Wright, Justin P.
Weigelt, Alexandra
Mathematisch-Naturwissenschaftliche Fakultät
Motivation Trait data are fundamental to the quantitative description of plant form and function. Although root traits capture key dimensions related to plant responses to changing environmental conditions and effects on ecosystem processes, they have rarely been included in large‐scale comparative studies and global models. For instance, root traits remain absent from nearly all studies that define the global spectrum of plant form and function. Thus, to overcome conceptual and methodological roadblocks preventing a widespread integration of root trait data into large‐scale analyses we created the Global Root Trait (GRooT) Database. GRooT provides ready‐to‐use data by combining the expertise of root ecologists with data mobilization and curation. Specifically, we (a) determined a set of core root traits relevant to the description of plant form and function based on an assessment by experts, (b) maximized species coverage through data standardization within and among traits, and (c) implemented data quality checks. Main types of variables contained GRooT contains 114,222 trait records on 38 continuous root traits. Spatial location and grain Global coverage with data from arid, continental, polar, temperate and tropical biomes. Data on root traits were derived from experimental studies and field studies. Time period and grain Data were recorded between 1911 and 2019. Major taxa and level of measurement GRooT includes root trait data for which taxonomic information is available. Trait records vary in their taxonomic resolution, with subspecies or varieties being the highest and genera the lowest taxonomic resolution available. It contains information for 184 subspecies or varieties, 6,214 species, 1,967 genera and 254 families. Owing to variation in data sources, trait records in the database include both individual observations and mean values. Software format GRooT includes two csv files. A GitHub repository contains the csv files and a script in R to query the database.
Files in this item
Thumbnail
GEB_GEB13179.pdf — Adobe PDF — 916.4 Kb
MD5: cc50a902809a0b0e8f91162a4f53ea29
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1111/geb.13179
Permanent URL
https://doi.org/10.1111/geb.13179
HTML
<a href="https://doi.org/10.1111/geb.13179">https://doi.org/10.1111/geb.13179</a>