Show simple item record

2021-09-29Zeitschriftenartikel DOI: 10.18452/26358
Statistical model building: Background “knowledge” based on inappropriate preselection causes misspecification
dc.contributor.authorHafermann, Lorena
dc.contributor.authorBecher, Heiko
dc.contributor.authorHerrmann, Carolin
dc.contributor.authorKlein, Nadja
dc.contributor.authorHeinze, Georg
dc.contributor.authorRauch, Geraldine
dc.date.accessioned2023-03-31T10:55:51Z
dc.date.available2023-03-31T10:55:51Z
dc.date.issued2021-09-29none
dc.date.updated2023-03-23T12:56:32Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/27040
dc.description.abstractBackground Statistical model building requires selection of variables for a model depending on the model’s aim. In descriptive and explanatory models, a common recommendation often met in the literature is to include all variables in the model which are assumed or known to be associated with the outcome independent of their identification with data driven selection procedures. An open question is, how reliable this assumed “background knowledge” truly is. In fact, “known” predictors might be findings from preceding studies which may also have employed inappropriate model building strategies. Methods We conducted a simulation study assessing the influence of treating variables as “known predictors” in model building when in fact this knowledge resulting from preceding studies might be insufficient. Within randomly generated preceding study data sets, model building with variable selection was conducted. A variable was subsequently considered as a “known” predictor if a predefined number of preceding studies identified it as relevant. Results Even if several preceding studies identified a variable as a “true” predictor, this classification is often false positive. Moreover, variables not identified might still be truly predictive. This especially holds true if the preceding studies employed inappropriate selection methods such as univariable selection. Conclusions The source of “background knowledge” should be evaluated with care. Knowledge generated on preceding studies can cause misspecification.eng
dc.description.sponsorshipDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
dc.description.sponsorshipFonds zur Förderung der wissenschaftlichen Forschung
dc.description.sponsorshipCharité - Universitätsmedizin Berlin (3093)
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBackground knowledgeeng
dc.subjectUnivariable selectioneng
dc.subjectBackward eliminationeng
dc.subjectVariable selectioneng
dc.subjectRegression modeleng
dc.subjectSimulation studyeng
dc.subjectNeed for more data sharingeng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleStatistical model building: Background “knowledge” based on inappropriate preselection causes misspecificationnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/27040-1
dc.identifier.doihttp://dx.doi.org/10.18452/26358
dc.type.versionpublishedVersionnone
local.edoc.pages12none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1471-2288
dcterms.bibliographicCitation.doi10.1186/s12874-021-01373-znone
dcterms.bibliographicCitation.journaltitleBMC medical research methodologynone
dcterms.bibliographicCitation.volume21none
dcterms.bibliographicCitation.issue1none
dcterms.bibliographicCitation.articlenumber196none
dcterms.bibliographicCitation.originalpublishernameSpringernone
dcterms.bibliographicCitation.originalpublisherplaceHeidelbergnone
bua.departmentWirtschaftswissenschaftliche Fakultätnone

Show simple item record