Zur Kurzanzeige

2020-11-10Zeitschriftenartikel DOI: 10.18452/26363
Neuronal activity regulates alternative exon usage
dc.contributor.authorDenkena, Johanna
dc.contributor.authorZaisser, Andrea
dc.contributor.authorMerz, Barbara
dc.contributor.authorKlinger, Bertram
dc.contributor.authorKuhl, Dietmar
dc.contributor.authorBlüthgen, Nils
dc.contributor.authorHermey, Guido
dc.date.accessioned2023-04-03T08:35:40Z
dc.date.available2023-04-03T08:35:40Z
dc.date.issued2020-11-10none
dc.date.updated2023-03-23T15:01:26Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/27047
dc.description.abstractNeuronal activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. A large number of genes regulated by different neuronal plasticity inducing pathways have been identified, but altered gene expression levels represent only part of the complexity of the activity-regulated transcriptional program. Alternative splicing, the differential inclusion and exclusion of exonic sequence in mRNA, is an additional mechanism that is thought to define the activity-dependent transcriptome. Here, we present a genome wide microarray-based survey to identify exons with increased expression levels at 1, 4 or 8 h following neuronal activity in the murine hippocampus provoked by generalized seizures. We used two different bioinformatics approaches to identify alternative activity-induced exon usage and to predict alternative splicing, ANOSVA (ANalysis Of Splicing VAriation) which we here adjusted to accommodate data from different time points and FIRMA (Finding Isoforms using Robust Multichip Analysis). RNA sequencing, in situ hybridization and reverse transcription PCR validate selected activity-dependent splicing events of previously described and so far undescribed activity-regulated transcripts, including Homer1a, Homer1d, Ania3, Errfi1, Inhba, Dclk1, Rcan1, Cda, Tpm1 and Krt75. Taken together, our survey significantly adds to the comprehensive understanding of the complex activity-dependent neuronal transcriptomic signature. In addition, we provide data sets that will serve as rich resources for future comparative expression analyses.eng
dc.description.sponsorshipProjekt DEAL
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectNeuronal activityeng
dc.subjectSynaptic plasticityeng
dc.subjectAlternative splicingeng
dc.subjectHippocampuseng
dc.subjectGene expressioneng
dc.subjectTranscriptomeeng
dc.subjectMicroarrayeng
dc.subjectRNA sequencingeng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleNeuronal activity regulates alternative exon usagenone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/27047-3
dc.identifier.doihttp://dx.doi.org/10.18452/26363
dc.type.versionpublishedVersionnone
local.edoc.pages24none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1756-6606
dcterms.bibliographicCitation.doi10.1186/s13041-020-00685-3none
dcterms.bibliographicCitation.journaltitleMolecular brainnone
dcterms.bibliographicCitation.volume13none
dcterms.bibliographicCitation.issue1none
dcterms.bibliographicCitation.articlenumber148none
dcterms.bibliographicCitation.originalpublishernameBioMed Centralnone
dcterms.bibliographicCitation.originalpublisherplaceLondonnone
bua.departmentIntegrative Forschungsinstitutenone

Zur Kurzanzeige