Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2022-08-08Zeitschriftenartikel DOI: 10.3847/1538-4357/ac7c08
A Probabilistic Autoencoder for Type Ia Supernova Spectral Time Series
Stein, George
Seljak, Uroš
Böhm, Vanessa
Aldering, G.
Antilogus, P.
Aragon, C.
Bailey, S.
Baltay, C.
Bongard, S.
Boone, K.
Buton, C.
Copin, Y.
Dixon, S.
Fouchez, D.
Gangler, E.
Gupta, R.
Hayden, B.
Hillebrandt, W.
Karmen, M.
Kim, A. G.
Kowalski, Marek cc
Küsters, D.
Léget, P.-F.
Mondon, F.
Nordin, Jakob
Pain, R.
Pecontal, E.
Pereira, R.
Perlmutter, S.
Ponder, K. A.
Rabinowitz, D.
Rigault, M.
Rubin, D.
Runge, K.
Saunders, C.
Smadja, G.
Suzuki, N.
Tao, C.
Taubenberger, S.
Thomas, R. C.
Vincenzi, M.
Mathematisch-Naturwissenschaftliche Fakultät
We construct a physically parameterized probabilistic autoencoder (PAE) to learn the intrinsic diversity of Type Ia supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage generative model, composed of an autoencoder that is interpreted probabilistically after training using a normalizing flow. We demonstrate that the PAE learns a low-dimensional latent space that captures the nonlinear range of features that exists within the population and can accurately model the spectral evolution of SNe Ia across the full range of wavelength and observation times directly from the data. By introducing a correlation penalty term and multistage training setup alongside our physically parameterized network, we show that intrinsic and extrinsic modes of variability can be separated during training, removing the need for the additional models to perform magnitude standardization. We then use our PAE in a number of downstream tasks on SNe Ia for increasingly precise cosmological analyses, including the automatic detection of SN outliers, the generation of samples consistent with the data distribution, and solving the inverse problem in the presence of noisy and incomplete data to constrain cosmological distance measurements. We find that the optimal number of intrinsic model parameters appears to be three, in line with previous studies, and show that we can standardize our test sample of SNe Ia with an rms of 0.091 ± 0.010 mag, which corresponds to 0.074 ± 0.010 mag if peculiar velocity contributions are removed. Trained models and codes are released at https://github.com/georgestein/suPAErnova.
Files in this item
Thumbnail
apj_935_1_5.pdf — Adobe PDF — 22.55 Mb
MD5: 26dc9c627d70c5dbad734c9b475d458a
Notes
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3847/1538-4357/ac7c08
Permanent URL
https://doi.org/10.3847/1538-4357/ac7c08
HTML
<a href="https://doi.org/10.3847/1538-4357/ac7c08">https://doi.org/10.3847/1538-4357/ac7c08</a>