Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2023-05-12Dissertation DOI: 10.18452/26094
Self-interaction corrected SCAN functional for molecules and solids in the numeric atom-center orbital framework
Bi, Sheng
Mathematisch-Naturwissenschaftliche Fakultät
Das „Strongly Constrained and Appropriately Normed“ (SCAN) Austausch-Korrelations-Funktional gehört zur Familie der meta-GGA (generalized gradient approximation) Funktionale. Es gibt aber auch Nachteile Zum einen leiden SCAN Rechnungen oft unter numerischen Instabilitäten, wodurch sehr viele Iteration zum Erreichen von Selbst-Konsistenz benötigt werden. Zum anderen leidet SCAN unter dem von GGA Methoden bekannten Selbstwechselwirkung-Fehler. Im ersten Teil der Arbeit habe ich die numerischen Stabilitätsprobleme in SCAN Rechnungen im Rahmen der numerischen Realraum-Integrationsroutinen im Code FHI-aims untersucht. Diese Analyse zeigt, dass die genannte Probleme durch Anwendung von standardisierten Dichte-Mischalgorithmen für die kinetische Energiedichte abgemildert werden können. Dadurch wird auch in SCAN-Rechnungen eine schnelle und stabile Konvergenz zur selbstkonsistenten Lösung ermöglicht. Im zweiten Teil der Arbeit habe ich untersucht, in welchem Rahmen sich der Selbstwechselwirkung-Fehler in SCAN mittels des von Perdew und Zunger vorgeschlagenen Selbstinteraktionskorrekturalgorithmus (PZ-SIC) verringern lässt. Es wurden aber auch Optimierungen für die PZ-SIC Methode entwickelt. Inspiriert von den ursprünglichen Argumenten in der PZ-SIC-Methode und anderen lokalisierten Methoden, wird in dieser Arbeit eine neuartige Randbedingung (orbital density constraint) vorgeschlagen, die sicherstellt, dass die PZ-SIC Orbitale während des Selbstkonsistenzzyklus lokalisiert bleiben. Dies mildert die Anfangswertabhängigkeit deutlich ab und hilft dabei, in die korrekte selbst-konsistente Lösung mit minimaler Energie zu konvergieren, unabhängig davon ob reelle oder komplexe SIC Orbitale verwendet werden. Die in dieser Arbeit getägtigen Entwicklungen und Untersuchungen sind Wegbereiter dafür, in Zukunft mit SIC-SCAN Rechnungen deutlich genauere ab initio Rechnungen mit nur gering höherem Rechenaufwand durchführen zu können.
 
The state-of-the-art “Strongly Constrained and Appropriately Normed” (SCAN) functional pertains to the family of meta-generalized-gradient approximation (meta-GGA) exchange-correlation functionals. Nonetheless, SCAN suffers from some well-documented deficiencies. In the first part of this thesis, I revisited the known numerical instability problems of the SCAN functional in the context of the numerical, real-space integration framework used in the FHI-aims code. This analysis revealed that applying standard density-mixing algorithms to the kinetic energy density attenuates and largely cures these numerical issues. By this means, SCAN calculations converge towards the self-consistent solution as fast and as efficiently as lower-order GGA calculations. In the second part of the thesis, I investigated strategies to alleviate the self-interaction error in SCAN calculations by using the self-interaction correction algorithm proposed by Perdew and Zunger (PZ-SIC). Inspired by the original arguments in PZ-SIC and other localized methods, I introduced a mathematical constraint, i.e., the orbital density constraint, that forces the orbitals to retain their localization throughout the self-consistency cycle. In turn, this alleviates the multiple-solutions problem and facilitates the convergence towards the correct, lowest-energy solution both for complex and real SIC orbitals. The developments and investigations performed in this thesis pave the road towards a more wide-spread use of SIC-SCAN calculations in the future, allowing more accurate predictions within only moderate increases of computational cost.
 
Files in this item
Thumbnail
dissertation_bi_sheng.pdf — Adobe PDF — 15.16 Mb
MD5: 77373d23ab2431e9f3e2b0d2096e6a4f
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/26094
Permanent URL
https://doi.org/10.18452/26094
HTML
<a href="https://doi.org/10.18452/26094">https://doi.org/10.18452/26094</a>