Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-05-31Zeitschriftenartikel DOI: 10.1007/s10884-021-10007-3
Relating a Rate-Independent System and a Gradient System for the Case of One-Homogeneous Potentials
Mielke, Alexander cc
Mathematisch-Naturwissenschaftliche Fakultät
We consider a non-negative and one-homogeneous energy functional J on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-independent system given in terms of the time-dependent functional E(t, u) = tJ(u) and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutions of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.
Files in this item
Thumbnail
s10884-021-10007-3.pdf — Adobe PDF — 497.2 Kb
MD5: df885910aa8dfbc6e454e80ec580c7fa
Notes
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1007/s10884-021-10007-3
Permanent URL
https://doi.org/10.1007/s10884-021-10007-3
HTML
<a href="https://doi.org/10.1007/s10884-021-10007-3">https://doi.org/10.1007/s10884-021-10007-3</a>