Show simple item record

2021-06-28Zeitschriftenartikel DOI: 10.1007/s42521-021-00033-7
CATE meets ML
dc.contributor.authorJacob, Daniel
dc.date.accessioned2023-05-25T13:51:43Z
dc.date.available2023-05-25T13:51:43Z
dc.date.issued2021-06-28none
dc.date.updated2023-03-27T21:04:42Z
dc.identifier.issn2524-6984
dc.identifier.urihttp://edoc.hu-berlin.de/18452/27313
dc.description.abstractFor treatment effects—one of the core issues in modern econometric analysis—prediction and estimation are two sides of the same coin. As it turns out, machine learning methods are the tool for generalized prediction models. Combined with econometric theory, they allow us to estimate not only the average but a personalized treatment effect—the conditional average treatment effect (CATE). In this tutorial, we give an overview of novel methods, explain them in detail, and apply them via Quantlets in real data applications. We study the effect that microcredit availability has on the amount of money borrowed and if 401(k) pension plan eligibility has an impact on net financial assets, as two empirical examples. The presented toolbox of methods contains meta-learners, like the doubly-robust, R-, T- and X-learner, and methods that are specially designed to estimate the CATE like the causal BART and the generalized random forest. In both, the microcredit and 401(k) example, we find a positive treatment effect for all observations but conflicting evidence of treatment effect heterogeneity. An additional simulation study, where the true treatment effect is known, allows us to compare the different methods and to observe patterns and similarities.eng
dc.description.sponsorshipHumboldt-Universität zu Berlin (1034)
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCausal inferenceeng
dc.subjectCATEeng
dc.subjectMachine learningeng
dc.subjectTutorialeng
dc.subject.ddc332 Finanzwirtschaftnone
dc.titleCATE meets MLnone
dc.typearticle
dc.subtitleConditional average treatment effect and machine learningnone
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/27313-9
dc.identifier.doi10.1007/s42521-021-00033-7none
dc.identifier.doihttp://dx.doi.org/10.18452/26613
dc.type.versionpublishedVersionnone
local.edoc.container-titleDigital financenone
local.edoc.pages50none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionWirtschaftswissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameSpringer Nature Switzerland AGnone
local.edoc.container-publisher-place[Cham]none
local.edoc.container-volume3none
local.edoc.container-issue2none
local.edoc.container-firstpage99none
local.edoc.container-lastpage148none
dc.description.versionPeer Reviewednone
dc.identifier.eissn2524-6186

Show simple item record