Show simple item record

2021-02-28Zeitschriftenartikel DOI: 10.1007/s11590-021-01707-2
On quantitative stability in infinite-dimensional optimization under uncertainty
dc.contributor.authorHoffhues, M.
dc.contributor.authorRömisch, Werner
dc.contributor.authorSurowiec, Thomas
dc.date.accessioned2023-05-26T11:36:16Z
dc.date.available2023-05-26T11:36:16Z
dc.date.issued2021-02-28none
dc.date.updated2023-03-25T18:53:59Z
dc.identifier.issn1862-4472
dc.identifier.urihttp://edoc.hu-berlin.de/18452/27327
dc.description.abstractThe vast majority of stochastic optimization problems require the approximation of the underlying probability measure, e.g., by sampling or using observations. It is therefore crucial to understand the dependence of the optimal value and optimal solutions on these approximations as the sample size increases or more data becomes available. Due to the weak convergence properties of sequences of probability measures, there is no guarantee that these quantities will exhibit favorable asymptotic properties. We consider a class of infinite-dimensional stochastic optimization problems inspired by recent work on PDE-constrained optimization as well as functional data analysis. For this class of problems, we provide both qualitative and quantitative stability results on the optimal value and optimal solutions. In both cases, we make use of the method of probability metrics. The optimal values are shown to be Lipschitz continuous with respect to a minimal information metric and consequently, under further regularity assumptions, with respect to certain Fortet-Mourier and Wasserstein metrics. We prove that even in the most favorable setting, the solutions are at best Hölder continuous with respect to changes in the underlying measure. The theoretical results are tested in the context of Monte Carlo approximation for a numerical example involving PDE-constrained optimization under uncertainty.eng
dc.description.sponsorshipDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectStabilityeng
dc.subjectStochastic programmingeng
dc.subjectOptimization under uncertaintyeng
dc.subjectProbability metricseng
dc.subjectPDE-constrained optimizationeng
dc.subjectFunctional data analysiseng
dc.subject.ddc510 Mathematiknone
dc.titleOn quantitative stability in infinite-dimensional optimization under uncertaintynone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/27327-8
dc.identifier.doi10.1007/s11590-021-01707-2none
dc.identifier.doihttp://dx.doi.org/10.18452/26628
dc.type.versionpublishedVersionnone
local.edoc.container-titleOptimization lettersnone
local.edoc.pages24none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameSpringernone
local.edoc.container-publisher-placeBerlin ; Heidelbergnone
local.edoc.container-volume15none
local.edoc.container-issue8none
local.edoc.container-firstpage2733none
local.edoc.container-lastpage2756none
dc.description.versionPeer Reviewednone
dc.identifier.eissn1862-4480

Show simple item record