Show simple item record

2020-11-19Zeitschriftenartikel DOI: 10.18452/26661
A Boothby–Wang Theorem for Besse Contact Manifolds
dc.contributor.authorKegel, Marc
dc.contributor.authorLange, Christian
dc.date.accessioned2023-06-01T15:29:05Z
dc.date.available2023-06-01T15:29:05Z
dc.date.issued2020-11-19none
dc.date.updated2023-05-15T23:53:14Z
dc.identifier.issn2199-6792
dc.identifier.urihttp://edoc.hu-berlin.de/18452/27354
dc.description.abstractA Reeb flow on a contact manifold is called Besse if all its orbits are periodic, possibly with different periods. We characterize contact manifolds whose Reeb flows are Besse as principal S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^1$$\end{document}-orbibundles over integral symplectic orbifolds satisfying some cohomological condition. Apart from the cohomological condition, this statement appears in the work of Boyer and Galicki in the language of Sasakian geometry (Boyer and Galicki in Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008). We illustrate some non-commonly dealt with perspective on orbifolds in a proof of the above result. More precisely, we work with orbifolds as quotients of manifolds by smooth Lie group actions with finite stabilizer groups. By introducing all relevant orbifold notions in this equivariant way, we avoid patching constructions with orbifold charts. As an application, and building on work by Cristofaro-Gardiner–Mazzucchelli, we deduce a complete classification of closed Besse contact 3-manifolds up to strict contactomorphism.eng
dc.description.sponsorshipDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBesse contact manifoldseng
dc.subjectBoothby–Wang theoremeng
dc.subjectSymplectic orbifoldeng
dc.subjectOrbibundleseng
dc.subjectPeriodic Reeb floweng
dc.subject.ddc510 Mathematiknone
dc.titleA Boothby–Wang Theorem for Besse Contact Manifoldsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/27354-8
dc.identifier.doihttp://dx.doi.org/10.18452/26661
dc.type.versionpublishedVersionnone
local.edoc.pages17none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn2199-6806
dcterms.bibliographicCitation.doi10.1007/s40598-020-00165-5none
dcterms.bibliographicCitation.journaltitleArnold mathematical journalnone
dcterms.bibliographicCitation.volume7none
dcterms.bibliographicCitation.issue2none
dcterms.bibliographicCitation.originalpublishernameSpringernone
dcterms.bibliographicCitation.originalpublisherplaceBerlin [u.a.]none
dcterms.bibliographicCitation.pagestart225none
dcterms.bibliographicCitation.pageend241none
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record