Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2023-05-09Zeitschriftenartikel DOI: 10.3390/computation11050095
A Two-Step Machine Learning Method for Predicting the Formation Energy of Ternary Compounds
Rengaraj, Varadarajan
Jost, Sebastian cc
Bethke, Franz cc
Plessl, Christian cc
Mirhosseini, Hossein cc
Walther, Andrea cc
Kühne, Thomas cc
Mathematisch-Naturwissenschaftliche Fakultät
Predicting the chemical stability of yet-to-be-discovered materials is an important aspect of the discovery and development of virtual materials. The conventional approach for computing the enthalpy of formation based on ab initio methods is time consuming and computationally demanding. In this regard, alternative machine learning approaches are proposed to predict the formation energies of different classes of materials with decent accuracy. In this paper, one such machine learning approach, a novel two-step method that predicts the formation energy of ternary compounds, is presented. In the first step, with a classifier, we determine the accuracy of heuristically calculated formation energies in order to increase the size of the training dataset for the second step. The second step is a regression model that predicts the formation energy of the ternary compounds. The first step leads to at least a 100% increase in the size of the dataset with respect to the data available in the Materials Project database. The results from the regression model match those from the existing state-of-the-art prediction models. In addition, we propose a slightly modified version of the Adam optimizer, namely centered Adam, and report the results from testing the centered Adam optimizer.
Files in this item
Thumbnail
computation-11-00095.pdf — Adobe PDF — 777.2 Kb
MD5: 528c240204ceea4ab0947507b2314e4f
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/computation11050095
Permanent URL
https://doi.org/10.3390/computation11050095
HTML
<a href="https://doi.org/10.3390/computation11050095">https://doi.org/10.3390/computation11050095</a>