Show simple item record

2023-05-09Zeitschriftenartikel DOI: 10.3390/computation11050095
A Two-Step Machine Learning Method for Predicting the Formation Energy of Ternary Compounds
dc.contributor.authorRengaraj, Varadarajan
dc.contributor.authorJost, Sebastian
dc.contributor.authorBethke, Franz
dc.contributor.authorPlessl, Christian
dc.contributor.authorMirhosseini, Hossein
dc.contributor.authorWalther, Andrea
dc.contributor.authorKühne, Thomas
dc.date.accessioned2023-06-09T09:14:54Z
dc.date.available2023-06-09T09:14:54Z
dc.date.issued2023-05-09none
dc.date.updated2023-06-07T10:44:24Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/27400
dc.description.abstractPredicting the chemical stability of yet-to-be-discovered materials is an important aspect of the discovery and development of virtual materials. The conventional approach for computing the enthalpy of formation based on ab initio methods is time consuming and computationally demanding. In this regard, alternative machine learning approaches are proposed to predict the formation energies of different classes of materials with decent accuracy. In this paper, one such machine learning approach, a novel two-step method that predicts the formation energy of ternary compounds, is presented. In the first step, with a classifier, we determine the accuracy of heuristically calculated formation energies in order to increase the size of the training dataset for the second step. The second step is a regression model that predicts the formation energy of the ternary compounds. The first step leads to at least a 100% increase in the size of the dataset with respect to the data available in the Materials Project database. The results from the regression model match those from the existing state-of-the-art prediction models. In addition, we propose a slightly modified version of the Adam optimizer, namely centered Adam, and report the results from testing the centered Adam optimizer.eng
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectmachine learningeng
dc.subjectneural networkeng
dc.subjectenthalpy of formationeng
dc.subjectthermodynamic stabilityeng
dc.subject.ddc004 Informatiknone
dc.titleA Two-Step Machine Learning Method for Predicting the Formation Energy of Ternary Compoundsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/27400-1
dc.identifier.doi10.3390/computation11050095none
dc.identifier.doihttp://dx.doi.org/10.18452/26710
dc.type.versionpublishedVersionnone
local.edoc.pages15none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn2079-3197
dcterms.bibliographicCitation.journaltitleComputationnone
dcterms.bibliographicCitation.volume11none
dcterms.bibliographicCitation.issue5none
dcterms.bibliographicCitation.articlenumber95none
dcterms.bibliographicCitation.originalpublishernameMDPInone
dcterms.bibliographicCitation.originalpublisherplaceBaselnone
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record