Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-02-18Zeitschriftenartikel DOI: 10.1007/s00531-020-01820-0
Thermal conductivity of supraglacial volcanic deposits in Iceland
Möller, Rebecca cc
Römer, Wolfgang
Möller, Marco cc
Wollenberg, Uwe
Lehmkuhl, Frank cc
Schneider, Christoph cc
Kukla, Peter cc
Mathematisch-Naturwissenschaftliche Fakultät
Supraglacial deposits of tephra or volcaniclastics have the potential to cause significant anomalies of glacier ablation and runoff. The intensity of these anomalies is governed by the thermal resistivity of the covering layer and hence the thermal conductivity of the deposited grains. This study concentrates on causal and quantitative relationships between density, geochemical composition and thermal conductivity of volcanic materials based on the analysis of 43 samples from locations across Iceland. Thermal conductivity is primarily influenced by density, whereas geochemical composition has been proved to be of subsidiary importance. Four different multiple regression models were calibrated that calculate the grain thermal conductivity of a volcanic material based on rock properties and geochemical composition. In a subsequent step, the bulk thermal conductivity of the respective deposit is calculated as a function of porosity and degree of water saturation. Examples using volcanic material from the Eyjafjallajökull 2010 and Grímsvötn 2011 eruptions confirm that the presented calculation scheme can be executed using only limited geochemical data as input. This facilitates an easy application of the modeling scheme immediately after a volcanic eruption.
Files in this item
Thumbnail
s00531-020-01820-0.pdf — Adobe PDF — 11.02 Mb
MD5: 29da18a2e24c8c7808c3c077caf36508
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1007/s00531-020-01820-0
Permanent URL
https://doi.org/10.1007/s00531-020-01820-0
HTML
<a href="https://doi.org/10.1007/s00531-020-01820-0">https://doi.org/10.1007/s00531-020-01820-0</a>