Show simple item record

2020-10-12Zeitschriftenartikel DOI: 10.18452/26975
Theta Surfaces
dc.contributor.authorAgostini, Daniele
dc.contributor.authorÇelik, Türkü Özlüm
dc.contributor.authorStruwe, Julia
dc.contributor.authorSturmfels, Bernd
dc.date.accessioned2023-07-17T14:56:13Z
dc.date.available2023-07-17T14:56:13Z
dc.date.issued2020-10-12none
dc.date.updated2023-05-15T09:26:42Z
dc.identifier.issn2305-221X
dc.identifier.urihttp://edoc.hu-berlin.de/18452/27663
dc.description.abstractA theta surface in affine 3-space is the zero set of a Riemann theta function in genus 3. This includes surfaces arising from special plane quartics that are singular or reducible. Lie and Poincaré showed that any analytic surface that is the Minkowski sum of two space curves in two different ways is a theta surface. The four space curves that generate such a double translation structure are parametrized by abelian integrals, so they are usually not algebraic. This paper offers a new view on this classical topic through the lens of computation. We present practical tools for passing between quartic curves and their theta surfaces, and we develop the numerical algebraic geometry of degenerations of theta functions.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectTranslation surfaceeng
dc.subjectAbelian integraleng
dc.subjectRiemann theta functioneng
dc.subjectTheta divisoreng
dc.subject.ddc510 Mathematiknone
dc.titleTheta Surfacesnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/27663-5
dc.identifier.doihttp://dx.doi.org/10.18452/26975
dc.type.versionpublishedVersionnone
local.edoc.pages29none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn2305-2228
dcterms.bibliographicCitation.doi10.1007/s10013-020-00443-xnone
dcterms.bibliographicCitation.journaltitleVietnam journal of mathematicsnone
dcterms.bibliographicCitation.volume49none
dcterms.bibliographicCitation.issue2none
dcterms.bibliographicCitation.originalpublishernameSpringernone
dcterms.bibliographicCitation.originalpublisherplaceSingaporenone
dcterms.bibliographicCitation.pagestart319none
dcterms.bibliographicCitation.pageend347none
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record