Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2023-07-29Zeitschriftenartikel DOI: 10.3390/rs15153779
Urban Treetop Detection and Tree-Height Estimation from Unmanned-Aerial-Vehicle Images
Wu, Hui
Zhuang, Minghao
Chen, Yuanchi
Meng, Chen
Wu, Caiyan
Ouyang, Linke
Liu, Yuhan
Shu, Yi
Tao, Yuzhong
Qiu, Tong cc
Li, Junxiang cc
Mathematisch-Naturwissenschaftliche Fakultät
Individual tree detection for urban forests in subtropical environments remains a great challenge due to the various types of forest structures, high canopy closures, and the mixture of evergreen and deciduous broadleaved trees. Existing treetop detection methods based on the canopy-height model (CHM) from UAV images cannot resolve commission errors in heterogeneous urban forests with multiple trunks or strong lateral branches. In this study, we improved the traditional local-maximum (LM) algorithm using a dual Gaussian filter, variable window size, and local normalized correlation coefficient (NCC). Specifically, we adapted a crown model of maximum/minimum tree-crown radii and an angle strategy to detect treetops. We then removed and merged the pending tree vertices. Our results showed that our improved LM algorithm had an average user accuracy (UA) of 87.3% (SD± 4.6), an average producer accuracy (PA) of 82.8% (SD± 4.1), and an overall accuracy of 93.3% (SD± 3.9) for sample plots with canopy closures less than 0.5. As for the sample plots with canopy closures from 0.5 to 1, the accuracies were 78.6% (SD± 31.5), 73.8% (SD± 10.3), and 68.1% (SD± 12.7), respectively. The tree-height estimation accuracy reached more than 0.96, with an average RMSE of 0.61 m. Our results show that the UAV-image-derived CHM can be used to accurately detect individual trees in mixed forests in subtropical cities like Shanghai, China, to provide vital tree-structure parameters for precise and sustainable forest management.
Files in this item
Thumbnail
remotesensing-15-03779.pdf — Adobe PDF — 2.728 Mb
MD5: 00cc8fe60d463f96a154054cf05d722e
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/rs15153779
Permanent URL
https://doi.org/10.3390/rs15153779
HTML
<a href="https://doi.org/10.3390/rs15153779">https://doi.org/10.3390/rs15153779</a>