Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2023-08-30Dissertation DOI: 10.18452/27106
Anonymization Techniques for Privacy-preserving Process Mining
Fahrenkrog-Petersen, Stephan A. cc
Mathematisch-Naturwissenschaftliche Fakultät
Process Mining ermöglicht die Analyse von Event Logs. Jede Aktivität ist durch ein Event in einem Trace recorded, welcher jeweils einer Prozessinstanz entspricht. Traces können sensible Daten, z.B. über Patienten enthalten. Diese Dissertation adressiert Datenschutzrisiken für Trace Daten und Process Mining. Durch eine empirische Studie zum Re-Identifikations Risiko in öffentlichen Event Logs wird die hohe Gefahr aufgezeigt, aber auch weitere Risiken sind von Bedeutung. Anonymisierung ist entscheidend um Risiken zu adressieren, aber schwierig weil gleichzeitig die Verhaltensaspekte des Event Logs erhalten werden sollen. Dies führt zu einem Privacy-Utility-Trade-Off. Dieser wird durch neue Algorithmen wie SaCoFa und SaPa angegangen, die Differential Privacy garantieren und gleichzeitig Utility erhalten. PRIPEL ergänzt die anonymiserten Control-flows um Kontextinformationen und ermöglich so die Veröffentlichung von vollständigen, geschützten Logs. Mit PRETSA wird eine Algorithmenfamilie vorgestellt, die k-anonymity garantiert. Dafür werden privacy-verletztende Traces miteinander vereint, mit dem Ziel ein möglichst syntaktisch ähnliches Log zu erzeugen. Durch Experimente kann eine bessere Utility-Erhaltung gegenüber existierenden Lösungen aufgezeigt werden.
 
Process mining analyzes business processes using event logs. Each activity execution is recorded as an event in a trace, representing a process instance's behavior. Traces often hold sensitive info like patient data. This thesis addresses privacy concerns arising from trace data and process mining. A re-identification risk study on public event logs reveals high risk, but other threats exist. Anonymization is vital to address these issues, yet challenging due to preserving behavioral aspects for analysis, leading to a privacy-utility trade-off. New algorithms, SaCoFa and SaPa, are introduced for trace anonymization using noise for differential privacy while maintaining utility. PRIPEL supplements anonymized control flows with trace contextual info for complete protected logs. For k-anonymity, the PRETSA algorithm family merges privacy-violating traces based on a prefix representation of the event log, maintaining syntactic similarity. Empirical evaluations demonstrate utility improvements over existing techniques.
 
Files in this item
Thumbnail
dissertation_stephan_fahrenkrog.pdf — Adobe PDF — 2.670 Mb
MD5: 545ba57d0b7b3851f4229ad7d6a8b26d
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/27106
Permanent URL
https://doi.org/10.18452/27106
HTML
<a href="https://doi.org/10.18452/27106">https://doi.org/10.18452/27106</a>