Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-06-11Zeitschriftenartikel DOI: 10.1140/epjs/s11734-021-00174-1
Models of stochastic Ca2+ spiking
Established approaches and inspirations from models of neuronal spikes
Friedhoff, Victor Nicolai
Ramlow, Lukas cc
Lindner, Benjamin cc
Falcke, Martin cc
Mathematisch-Naturwissenschaftliche Fakultät
Complexity and limited knowledge render it impractical to write down the equations describing a cellular system completely. Cellular biophysics uses hypotheses-based modelling instead. How can we set up models with predictive power beyond the experimental examples used to develop them? The two textbook systems of cellular biophysics, Ca2+ signalling and neuronal membrane potential dynamics, both face this question. Both systems also have a non-equilibrium feature in common: on different time scales and for different observables, they exhibit stochastic spiking, i.e., sequences of stereotypical events that are separated by statistically distributed intervals, the interspike intervals (ISI). Here we review recent progress on the description of Ca2+ spikes in terms of blips, puffs and cellular Ca2+ spikes and focus on stochastic models that can explain the statistics of the single ISIs, in particular its mean and variance and the cell-to-cell variability of these statistics. We also review models of the stochastic integrate-and-fire type and measures like the spike-train power spectrum or the serial correlation coefficient that are used to describe neuronal spike trains. These concepts from computational neuroscience might be applicable for understanding long-term memory effects in Ca2+ spiking that extend beyond a single ISI, such as cumulative refractoriness.
Files in this item
Thumbnail
s11734-021-00174-1.pdf — Adobe PDF — 1.130 Mb
MD5: dfa1e44665187fe99f68bcf23068d44e
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1140/epjs/s11734-021-00174-1
Permanent URL
https://doi.org/10.1140/epjs/s11734-021-00174-1
HTML
<a href="https://doi.org/10.1140/epjs/s11734-021-00174-1">https://doi.org/10.1140/epjs/s11734-021-00174-1</a>