Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-02-17Zeitschriftenartikel DOI: 10.1038/s41467-021-21212-5
Social networks predict the life and death of honey bees
Wild, Benjamin cc
Dormagen, David cc
Zachariae, Adrian cc
Smith, Michael cc
Traynor, Kirsten cc
Brockmann, Dirk cc
Couzin, Iain cc
Landgraf, Tim cc
Lebenswissenschaftliche Fakultät
In complex societies, individuals’ roles are reflected by interactions with other conspecifics. Honey bees (Apis mellifera) generally change tasks as they age, but developmental trajectories of individuals can vary drastically due to physiological and environmental factors. We introduce a succinct descriptor of an individual’s social network that can be obtained without interfering with the colony. This ‘network age’ accurately predicts task allocation, survival, activity patterns, and future behavior. We analyze developmental trajectories of multiple cohorts of individuals in a natural setting and identify distinct developmental pathways and critical life changes. Our findings suggest a high stability in task allocation on an individual level. We show that our method is versatile and can extract different properties from social networks, opening up a broad range of future studies. Our approach highlights the relationship of social interactions and individual traits, and provides a scalable technique for understanding how complex social systems function.
Files in this item
Thumbnail
s41467-021-21212-5.pdf — Adobe PDF — 3.934 Mb
MD5: 927ff758bd9a55ca45d6ded3ce3715b8
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1038/s41467-021-21212-5
Permanent URL
https://doi.org/10.1038/s41467-021-21212-5
HTML
<a href="https://doi.org/10.1038/s41467-021-21212-5">https://doi.org/10.1038/s41467-021-21212-5</a>