Show simple item record

2023-09-20Dissertation DOI: 10.18452/27077
Numerical Analysis and Simulation of Coupled Systems of Stochastic Partial Differential Equations with Algebraic Constraints
dc.contributor.authorSchade, Maximilian
dc.date.accessioned2023-09-20T11:16:55Z
dc.date.available2023-09-20T11:16:55Z
dc.date.issued2023-09-20none
dc.identifier.urihttp://edoc.hu-berlin.de/18452/28075
dc.description.abstractDiese Dissertation befasst sich mit der Analyse von semi-expliziten Systemen aus stochastischen Differentialgleichungen (SDEs) gekoppelt mit stochastischen partiellen Differentialgleichungen (SPDEs) und algebraischen Gleichungen (AEs) mit möglicherweise stochastischen Anteilen in den Operatoren. Diese Systeme spielen eine entscheidende Rolle bei der Modellierung von realen Anwendungen, wie zum Beispiel elektrischen Schaltkreisen und Gasnetzwerken. Der Hauptbeitrag dieser Arbeit besteht darin, einen Rahmen bereitzustellen, in dem diese semiexpliziten Systeme auch bei stochastischen Einflüssen in den algebraischen Randbedingungen eine eindeutige Lösung haben. Wir führen einen numerischen Ansatz für solche Systeme ein und schlagen eine neue Möglichkeit vor, um Konvergenzergebnisse von driftimpliziten Methoden für SDEs auf stochastische Differential-Algebraische Gleichungen (SDAEs) zu erweitern. Dies ist wichtig, da viele Methoden für SDEs gut entwickelt sind, aber im Allgemeinen nicht für SDAEs in Betracht gezogen werden. Darüber hinaus untersuchen wir praktische Anwendungen in der Schaltkreis- und Gasnetzwerksimulation und diskutieren die dabei auftretenden Herausforderungen und Einschränkungen. Insbesondere stellen wir dabei auch einen Modellierungsansatz für Gasnetzwerke bestehend aus Rohren und algebraischen Komponenten vor. Abschließend testen wir in beiden Anwendungsfeldern die numerische Konvergenz anhand konkreter Beispiele mit verschiedenen Arten von stochastischer Modellierung.ger
dc.description.abstractThis dissertation delves into the analysis of semi-explicit systems of stochastic differential equations (SDEs) coupled with stochastic partial differential equations (SPDEs) and algebraic equations (AEs) with possibly noise-driven operators. These systems play a crucial role in modeling real-world applications, such as electrical circuits and gas networks. The main contribution of this work is to provide a setting in which these semi-explicit systems have a unique solution even with stochastic influences in the algebraic constraints. We introduce a numerical approach for such systems and propose a new approach for extending convergence results of drift-implicit methods for SDEs to stochastic differential-algebraic equations (SDAEs). This is important, as many methods are well-developed for SDEs but generally not considered for SDAEs. Furthermore, we examine practical applications in circuit and gas network simulation, discussing the challenges and limitations encountered. In particular, we provide a modeling approach for gas networks consisting of pipes and algebraic components. To conclude, we test numerical convergence in both application settings on concrete examples with different types of stochastic modeling.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectStochastische Partielle Differential-Algebraische Gleichungger
dc.subjectStochastische Differential-Algebraische Gleichungenger
dc.subjectGekoppelte Systemeger
dc.subjectSchaltkreiseger
dc.subjectSPDEs mit Nebenbedingungenger
dc.subjectRandwerteger
dc.subjectGasnetzwerkeger
dc.subjectStochastic Partial Differential-Algebraic Equationseng
dc.subjectCoupled Systemseng
dc.subjectCircuitseng
dc.subjectConstrained SPDEseng
dc.subjectBoundary Conditionseng
dc.subjectGas Networkseng
dc.subjectStochastic Differential-Algebraic Equationseng
dc.subjectSPDAEeng
dc.subjectSDAEeng
dc.subject.ddc510 Mathematiknone
dc.subject.ddc518 Numerische Analysisnone
dc.subject.ddc519 Wahrscheinlichkeiten und angewandte Mathematiknone
dc.titleNumerical Analysis and Simulation of Coupled Systems of Stochastic Partial Differential Equations with Algebraic Constraintsnone
dc.typedoctoralThesis
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/28075-4
dc.identifier.doihttp://dx.doi.org/10.18452/27077
dc.date.accepted2023-07-17
dc.contributor.refereeTischendorf, Caren
dc.contributor.refereePerkowski, Nicolas
dc.contributor.refereeKværnø, Anne
local.edoc.pages133none
local.edoc.type-nameDissertation
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record