Show simple item record

2022-06-14Zeitschriftenartikel DOI: 10.18452/27767
Elastic analysis of irregularly or sparsely sampled curves
dc.contributor.authorSteyer, Lisa Maike
dc.contributor.authorStöcker, Almond
dc.contributor.authorGreven, Sonja
dc.date.accessioned2023-11-22T11:34:57Z
dc.date.available2023-11-22T11:34:57Z
dc.date.issued2022-06-14none
dc.identifier.urihttp://edoc.hu-berlin.de/18452/28417
dc.description.abstractWe provide statistical analysis methods for samples of curves in two or more dimensions, where the image, but not the parameterization of the curves, is of interest and suitable alignment/registration is thus necessary. Examples are handwritten letters, movement paths, or object outlines. We focus in particular on the computation of (smooth) means and distances, allowing, for example, classification or clustering. Existing parameterization invariant analysis methods based on the elastic distance of the curves modulo parameterization, using the square‐root‐velocity framework, have limitations in common realistic settings where curves are irregularly and potentially sparsely observed. We propose using spline curves to model smooth or polygonal (Fréchet) means of open or closed curves with respect to the elastic distance and show identifiability of the spline model modulo parameterization. We further provide methods and algorithms to approximate the elastic distance for irregularly or sparsely observed curves, via interpreting them as polygons. We illustrate the usefulness of our methods on two datasets. The first application classifies irregularly sampled spirals drawn by Parkinson's patients and healthy controls, based on the elastic distance to a mean spiral curve computed using our approach. The second application clusters sparsely sampled GPS tracks based on the elastic distance and computes smooth cluster means to find new paths on the Tempelhof field in Berlin. All methods are implemented in the R‐package “elasdics” and evaluated in simulations.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 Mathematiknone
dc.titleElastic analysis of irregularly or sparsely sampled curvesnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/28417-3
dc.identifier.doihttp://dx.doi.org/10.18452/27767
dc.type.versionpublishedVersionnone
local.edoc.pages13none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1541-0420
dcterms.bibliographicCitation.doi10.1111/biom.13706
dcterms.bibliographicCitation.journaltitleBiometricsnone
dcterms.bibliographicCitation.volume79none
dcterms.bibliographicCitation.issue3none
dcterms.bibliographicCitation.originalpublishernameWiley-Blackwelnone
dcterms.bibliographicCitation.originalpublisherplaceMalden, Mass.none
dcterms.bibliographicCitation.pagestart2103none
dcterms.bibliographicCitation.pageend2115none
bua.departmentWirtschaftswissenschaftliche Fakultätnone

Show simple item record