Show simple item record

2023-06-29Zeitschriftenartikel DOI: 10.18452/28512
Unified a priori analysis of four second-order FEM for fourth-order quadratic semilinear problems
dc.contributor.authorCarstensen, Carsten
dc.contributor.authorNataraj, Neela
dc.contributor.authorChirappurathu Remesan, Gopikrishnan
dc.contributor.authorShylaja, Devika
dc.date.accessioned2024-04-17T13:26:20Z
dc.date.available2024-04-17T13:26:20Z
dc.date.issued2023-06-29none
dc.identifier.urihttp://edoc.hu-berlin.de/18452/29145
dc.description.abstractA unified framework for fourth-order semilinear problems with trilinear nonlinearity and general sources allows for quasi-best approximation with lowest-order finite element methods. This paper establishes the stability and a priori error control in the piecewise energy and weaker Sobolev norms under minimal hypotheses. Applications include the stream function vorticity formulation of the incompressible 2D Navier-Stokes equations and the von Kármán equations with Morley, discontinuous Galerkin, C0 interior penalty, and weakly over-penalized symmetric interior penalty schemes. The proposed new discretizations consider quasi-optimal smoothers for the source term and smoother-type modifications inside the nonlinear terms.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 Mathematiknone
dc.titleUnified a priori analysis of four second-order FEM for fourth-order quadratic semilinear problemsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/29145-3
dc.identifier.doihttp://dx.doi.org/10.18452/28512
dc.type.versionpublishedVersionnone
local.edoc.pages46none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn0945-3245
dcterms.bibliographicCitation.doi10.1007/s00211-023-01356-w
dcterms.bibliographicCitation.journaltitleNumerische Mathematiknone
dcterms.bibliographicCitation.volume154none
dcterms.bibliographicCitation.issue3–4none
dcterms.bibliographicCitation.originalpublishernameSpringernone
dcterms.bibliographicCitation.originalpublisherplaceHeidelbergnone
dcterms.bibliographicCitation.pagestart323none
dcterms.bibliographicCitation.pageend368none
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record