Show simple item record

2024-02-08Zeitschriftenartikel DOI: 10.18452/28718
Hybrid RPA:DFT Approach for Adsorption on Transition Metal Surfaces: Methane and Ethane on Platinum (111)
dc.contributor.authorSheldon, Christopher
dc.contributor.authorPaier, Joachim
dc.contributor.authorUsvyat, Denis
dc.contributor.authorSauer, Joachim
dc.date.accessioned2024-05-21T13:23:44Z
dc.date.available2024-05-21T13:23:44Z
dc.date.issued2024-02-08none
dc.date.updated2024-05-13T07:53:38Z
dc.identifier.issn1549-9618
dc.identifier.urihttp://edoc.hu-berlin.de/18452/29316
dc.description.abstractThe hybrid QM:QM approach is extended to adsorption on transition metal surfaces. The random phase approximation (RPA) as the high-level method is applied to cluster models and, using the subtractive scheme, embedded in periodic models which are treated with density functional theory (DFT) that is the low-level method. The PBE functional, both without dispersion and augmented with the many-body dispersion (MBD), is employed. Adsorption of methane and ethane on the Pt(111) surface is studied. For methane in a 2 × 2 surface cell, the hybrid RPA:PBE and RPA:PBE+MBD results, −14.3 and −16.0 kJ mol–1, respectively, are in close agreement with the periodic RPA value of −13.8 kJ mol–1 at significantly reduced computational cost (factor of ∼50). For methane and ethane, the RPA:PBE results (−14.3 and −17.8 kJ mol–1, respectively) indicate underbinding relative to energies derived from experimental desorption barriers for relevant loadings (−15.6 ± 1.6 and −27.2 ± 2.9 kJ mol–1, respectively), whereas the hybrid RPA:PBE+MBD results (−16.0 and −24.9 kJ mol–1, respectively) agree with the experiment well within experimental uncertainty limits (deviation of −0.4 ± 1.5 and +2.3 ± 2.9 kJ mol–1, respectively). Finding a cluster that adequately and robustly represents the adsorbate at the bulk surface is important for the success of the RPA-based QM:QM scheme for metals.eng
dc.description.sponsorshipNorddeutscher Verbund f?r Hoch- und H?chstleistungsrechnen 10.13039/100030685
dc.description.sponsorshipNorddeutscher Verbund f?r Hoch- und H?chstleistungsrechnen 10.13039/100030685
dc.description.sponsorshipDeutsche Forschungsgemeinschaft 10.13039/501100001659
dc.description.sponsorshipFonds der Chemischen Industrie 10.13039/100018992
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftennone
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitennone
dc.titleHybrid RPA:DFT Approach for Adsorption on Transition Metal Surfaces: Methane and Ethane on Platinum (111)none
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/29316-3
dc.identifier.doihttp://dx.doi.org/10.18452/28718
dc.type.versionpublishedVersionnone
local.edoc.pages9none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1549-9626
dcterms.bibliographicCitation.doi10.1021/acs.jctc.3c01308
dcterms.bibliographicCitation.journaltitleJournal of chemical theory and computationnone
dcterms.bibliographicCitation.volume20none
dcterms.bibliographicCitation.issue5none
dcterms.bibliographicCitation.originalpublishernameAmerican Chemical Societynone
dcterms.bibliographicCitation.originalpublisherplaceWashington, DCnone
dcterms.bibliographicCitation.pagestart2219none
dcterms.bibliographicCitation.pageend2227none
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record