Show simple item record

2023-04-18Zeitschriftenartikel DOI: 10.18452/28788
Electronic Structure of Low‐Dimensional Inorganic/Organic Interfaces: Hybrid Density Functional Theory, G 0 W 0, and Electrostatic Models
dc.contributor.authorKrumland, Jannis
dc.contributor.authorCocchi, Caterina
dc.date.accessioned2024-05-29T12:07:56Z
dc.date.available2024-05-29T12:07:56Z
dc.date.issued2023-04-18none
dc.date.updated2024-04-16T09:59:56Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/29373
dc.description.abstractFirst-principles simulations of electronic properties of hybrid inorganic/organic interfaces are challenging, as common density functional theory (DFT) approximations target specific material classes like bulk semiconductors or gas-phase molecules. Taking as a prototypical example anthracene (ANT) physisorbed on monolayer MoS2, the ability of different ab initio schemes to describe the electronic structure using semilocal and hybrid DFT is assessed. For the latter, an unconstrained three-parameter range-separation scheme is used. Comparisons against results from the many-body perturbation theory indicate that properly parametrized hybrid functionals can approximate with reasonable accuracy the quasiparticle properties of both ANT and MoS2 taken by themselves. However, this is not the case for the hybrid interface, where neither functional can predict the correct-level alignment nor provide a particularly good starting point for G 0 W 0 calculations. It is shown that nonempirically parametrized electrostatic models can accomplish the same task at negligible computational costs. Such schemes can include substrates of hybrid interfaces in good agreement with experimental data. The results indicate that currently, fully atomistic, many-body simulations of weakly interacting hybrid systems are not worth the required computational resources. In contrast, ab initio-parametrized effective models mimicking the environment offer a scalable alternative without compromising accuracy and predictivity.eng
dc.description.sponsorshipDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
dc.description.sponsorshipBundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
dc.description.sponsorshipNiedersächsisches Ministerium für Wissenschaft und Kultur
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectdensity functional theoryeng
dc.subjectelectronic structureseng
dc.subjecthybrid interfaceseng
dc.subjectlow-dimensional materialseng
dc.subjectmany-body perturbation theoryeng
dc.subject.ddc530 Physiknone
dc.titleElectronic Structure of Low‐Dimensional Inorganic/Organic Interfaces: Hybrid Density Functional Theory, G 0 W 0, and Electrostatic Modelsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/29373-0
dc.identifier.doihttp://dx.doi.org/10.18452/28788
dc.type.versionpublishedVersionnone
local.edoc.pages12none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1862-6319
dcterms.bibliographicCitation.doi10.1002/pssa.202300089
dcterms.bibliographicCitation.journaltitlePhysica status solidi. A, Applications and materials sciencenone
dcterms.bibliographicCitation.volume221none
dcterms.bibliographicCitation.issue1none
dcterms.bibliographicCitation.articlenumber2300089none
dcterms.bibliographicCitation.originalpublishernameWiley-VCHnone
dcterms.bibliographicCitation.originalpublisherplaceWeinheimnone
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record