Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Informatik
  • Informatik-Berichte
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Informatik
  • Informatik-Berichte
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Informatik
  • Informatik-Berichte
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Informatik
  • Informatik-Berichte
  • View Item
2009-01-01Buch DOI: 10.18452/2487
Daubechies Versus Biorthogonal Wavelets for Moving Object Detection in Traffic Monitoring Systems
Salem, Mohammed A.
Ghamry, Nivin
Meffert, Beate
Moving object detection is a fundamental task for a variety of traffic applications. In this paper the Daubechies and biorthogonal wavelet families are exploited for extracting the relevant movement information in moving image sequences in a 3D wavelet-based segmentation algorithm. The proposed algorithm is applied for traffic monitoring systems. The objective and subjective experimental results obtained by applying both wavelet types are compared and interpreted in terms of the different wavelet properties and the characteristics of the image sequences. The comparisons show the superior performance of the symmetric biorthogonal wavelets in the presence of noisy images and changing lighting conditions when compared to the application of high order Daubechies wavelets. The algorithm is evaluated using simulated images in the Matlab environment.
Files in this item
Thumbnail
229.pdf — Adobe PDF — 553.0 Kb
MD5: 74be72f9f735b0939554eea21dd40b27
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2487
Permanent URL
https://doi.org/10.18452/2487
HTML
<a href="https://doi.org/10.18452/2487">https://doi.org/10.18452/2487</a>