Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-10-21Buch DOI: 10.18452/2528
Topological Properties of the Approximate Subdifferential
Henrion, René
The approximate subdifferential introduced by Mordukhovich has attracted much attention in recent works on nonsmooth optimization. Potential advantages over other concepts of subdifferentiability might be related to its non-convexity. This motivates to study some topological properties more in detail. As the main result, it is shown that in a Hilbert space setting each weakly compact set may be obtained as the Kuratowski-Painlevé limit of the approximate subdifferentials of some family of Lipschitzian functions. As a consequence, apart from finiteness, there is no restriction on the number of connected components of the subdifferential. In the finite dimensional case, each topological type of a compact set may be realized by an approximate subdifferential of some Lipschitzian function. These are clear differences for instance to Clarke’s subdifferential. The results stated above require the definition of Lipschitzian functions on a space which is enlarged by one extra dimension. Otherwise they would not hold true any longer since one can show, that for a real function the number of connected components of the approximate subdifferential is limited by two.
Files in this item
Thumbnail
11.pdf — Adobe PDF — 223.2 Kb
MD5: e075aad2406f30fdc45a0bc3033ee658
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2528
Permanent URL
https://doi.org/10.18452/2528
HTML
<a href="https://doi.org/10.18452/2528">https://doi.org/10.18452/2528</a>