Show simple item record

2005-10-21Buch DOI: 10.18452/2540
Parametric Linear Complementarity Problems
dc.contributor.authorTammer, Klaus
dc.date.accessioned2017-06-15T17:29:27Z
dc.date.available2017-06-15T17:29:27Z
dc.date.created2005-10-21
dc.date.issued2005-10-21
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3192
dc.description.abstractWe study linear complementarity problems depending on parameters in the right-hand side and (or) in the matrix. For the case that all elements of the right-hand side are independent parameters we give a new proof for the equivalence of three different important local properties of the corresponding solution set map in a neighbourhood of an element of its graph. For one- and multiparametric problems this equivalence does not hold and the corresponding graph may have a rather complicate structure. But we are able to show that for a generic class of linear complementarity problems depending linearly on only one real parameter the situation is much more easier.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.subject.ddc510 Mathematik
dc.titleParametric Linear Complementarity Problems
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10051048
dc.identifier.doihttp://dx.doi.org/10.18452/2540
dc.subject.dnb27 Mathematik
local.edoc.container-titlePreprints aus dem Institut für Mathematik
local.edoc.pages17
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume1996
local.edoc.container-issue12
local.edoc.container-year1996
local.edoc.container-erstkatid2075199-0

Show simple item record