Show simple item record

2005-10-26Buch DOI: 10.18452/2543
How Floquet-theory applies to differential-algebraic equations
dc.contributor.authorLamour, René
dc.contributor.authorMärz, Roswitha
dc.contributor.authorWinkler, Renate
dc.date.accessioned2017-06-15T17:30:01Z
dc.date.available2017-06-15T17:30:01Z
dc.date.created2005-10-26
dc.date.issued2005-10-26
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3195
dc.description.abstractLocal stability of periodic solutions is established by means of a corresponding Floquet-theory for index-1 differential-algebraic equations. For this, linear differential-algebraic equations with periodic coefficients are considered in detail, and a natural notion of the monodromy matrix is figured out, which generalizes the well-known case of regular ordinary differential equations.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.titleHow Floquet-theory applies to differential-algebraic equations
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10051214
dc.identifier.doihttp://dx.doi.org/10.18452/2543
dc.subject.dnb27 Mathematik
local.edoc.pages20
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year1996
dc.identifier.zdb2075199-0
bua.series.namePreprints aus dem Institut für Mathematik
bua.series.issuenumber1996,15

Show simple item record