How Floquet-theory applies to differential-algebraic equations
dc.contributor.author | Lamour, René | |
dc.contributor.author | März, Roswitha | |
dc.contributor.author | Winkler, Renate | |
dc.date.accessioned | 2017-06-15T17:30:01Z | |
dc.date.available | 2017-06-15T17:30:01Z | |
dc.date.created | 2005-10-26 | |
dc.date.issued | 2005-10-26 | |
dc.identifier.issn | 0863-0976 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/3195 | |
dc.description.abstract | Local stability of periodic solutions is established by means of a corresponding Floquet-theory for index-1 differential-algebraic equations. For this, linear differential-algebraic equations with periodic coefficients are considered in detail, and a natural notion of the monodromy matrix is figured out, which generalizes the well-known case of regular ordinary differential equations. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 510 Mathematik | |
dc.title | How Floquet-theory applies to differential-algebraic equations | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-10051214 | |
dc.identifier.doi | http://dx.doi.org/10.18452/2543 | |
dc.subject.dnb | 27 Mathematik | |
local.edoc.pages | 20 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
local.edoc.container-year | 1996 | |
dc.identifier.zdb | 2075199-0 | |
bua.series.name | Preprints aus dem Institut für Mathematik | |
bua.series.issuenumber | 1996,15 |