Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-10-26Buch DOI: 10.18452/2548
Characterization of stability for cone increasing constraint mappings
Henrion, René
We investigate stability (in terms of metric regularity) for the specific class of cone increasing constraint mappings. This class is of interest in problems with additional knowledge on some nondecreasing behavior of the constraints (e.g. in chance constraints, where the distribution function of some measure is automatically nondecreasing). It is demonstrated, how this extra information may lead to sharper characterizations. In the first part, rather general cone increasing constraint mappings are studied by exploiting criteria for metric regularity, as recently developed by Mordukhovich. The second part focusses on genericity investigations for global metric regularity (i.e. metric regularity at all feasible points) of nondecreasing constraints in finite dimensions. Applications to chance constraints are given.
Files in this item
Thumbnail
20.pdf — Adobe PDF — 327.7 Kb
MD5: ffd6f0584191359822a93b30c5eea970
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2548
Permanent URL
https://doi.org/10.18452/2548
HTML
<a href="https://doi.org/10.18452/2548">https://doi.org/10.18452/2548</a>