A Unifying Theory Of A Posteriori Finite Element Error Control
dc.contributor.author | Carstensen, Carsten | |
dc.date.accessioned | 2017-06-15T17:32:33Z | |
dc.date.available | 2017-06-15T17:32:33Z | |
dc.date.created | 2005-11-02 | |
dc.date.issued | 2004-03-02 | |
dc.identifier.issn | 0863-0976 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/3208 | |
dc.description.abstract | Residual-based a posteriori error estimates are derived wihtin a unified setting for lowest-order conforming, nonconforming, and mixed finite element schemes. The various residuals are identified for all techniques and problems as the operator norm $\| l \|$ of a linear functional of the form \[ l(v) := \int_{\Omega} p_h : Dv dx + \int_{\Omega} g_{\Omega} \cdot v dx \] in the variable $v$ of a Soboloev space $V$. The main assumption is that the first-order finite element space $S^1_0 (\Omega) \subset \ker l \subset V$ is included in the kernel $\ker l$ of $l$. As a consequence, {\it any residual estimator} that is a computable bound of $\| l \|$ can be used within the proposed frame {\it without} further analysis for nonconforming or mixed FE schemes. Applications are given for the Laplace, Stokes, and Navier-Lam\'e equations. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | finite element method | eng |
dc.subject | A posteriori | eng |
dc.subject | error analysis | eng |
dc.subject | nonconforming finite element method | eng |
dc.subject | mixed finite element method | eng |
dc.subject | adaptive algorithm | eng |
dc.subject.ddc | 510 Mathematik | |
dc.title | A Unifying Theory Of A Posteriori Finite Element Error Control | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-10051766 | |
dc.identifier.doi | http://dx.doi.org/10.18452/2556 | |
local.edoc.pages | 21 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
local.edoc.container-year | 2005 | |
dc.identifier.zdb | 2075199-0 | |
bua.series.name | Preprints aus dem Institut für Mathematik | |
bua.series.issuenumber | 2005,5 |