Show simple item record

2004-03-02Buch DOI: 10.18452/2556
A Unifying Theory Of A Posteriori Finite Element Error Control
dc.contributor.authorCarstensen, Carsten
dc.date.accessioned2017-06-15T17:32:33Z
dc.date.available2017-06-15T17:32:33Z
dc.date.created2005-11-02
dc.date.issued2004-03-02
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3208
dc.description.abstractResidual-based a posteriori error estimates are derived wihtin a unified setting for lowest-order conforming, nonconforming, and mixed finite element schemes. The various residuals are identified for all techniques and problems as the operator norm $\| l \|$ of a linear functional of the form \[ l(v) := \int_{\Omega} p_h : Dv dx + \int_{\Omega} g_{\Omega} \cdot v dx \] in the variable $v$ of a Soboloev space $V$. The main assumption is that the first-order finite element space $S^1_0 (\Omega) \subset \ker l \subset V$ is included in the kernel $\ker l$ of $l$. As a consequence, {\it any residual estimator} that is a computable bound of $\| l \|$ can be used within the proposed frame {\it without} further analysis for nonconforming or mixed FE schemes. Applications are given for the Laplace, Stokes, and Navier-Lam\'e equations.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectfinite element methodeng
dc.subjectA posteriorieng
dc.subjecterror analysiseng
dc.subjectnonconforming finite element methodeng
dc.subjectmixed finite element methodeng
dc.subjectadaptive algorithmeng
dc.subject.ddc510 Mathematik
dc.titleA Unifying Theory Of A Posteriori Finite Element Error Control
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10051766
dc.identifier.doihttp://dx.doi.org/10.18452/2556
local.edoc.pages21
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year2005
dc.identifier.zdb2075199-0
bua.series.namePreprints aus dem Institut für Mathematik
bua.series.issuenumber2005,5

Show simple item record