Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-02Buch DOI: 10.18452/2557
Decoding of codes on Picard curves
Sarlabous, Jorge Estrada
Barcelo, Jorge Alejandro Pineiro
The Picard curves are genus three curves with a non trivial automorphism, which have been intensively studied due their connection with interesting number theoretic problems. In 1989, R. Pellikaan obtained an algorithm decoding geometric codes up to [(d*-1)/2]-errors, where d* is the designed distance of the code. His algorithm is not completely effective, but recently some authors have given an effective answer to Pellikaan's algorithm using the particular features of special curves, such as the Klein quartic and the hyperelliptic curves. In this paper we show that the Picard curves are suitable to obtain an effective answer to Pellikaan's algorithm.
Files in this item
Thumbnail
30.pdf — Adobe PDF — 230.6 Kb
MD5: 0def1baaff2070d9bd10ffb6ce388e42
Notes
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2557
Permanent URL
https://doi.org/10.18452/2557
HTML
<a href="https://doi.org/10.18452/2557">https://doi.org/10.18452/2557</a>