Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-02Buch DOI: 10.18452/2563
Improved linear multi-step methods for stochastic ordinary differential equations
Buckwar, Evelyn
Winkler, Renate
We consider linear multi-step methods for stochastic ordinary differential equations and study their convergence properties for problems with small noise or additive noise. We present schemes where the drift part is approximated by well-known methods for deterministic ordinary differential equations. Previously, we considered Maruyama-type schemes, where only the increments of the driving Wiener process are used to discretize the diffusion part. Here, we suggest to improve the discretization of the diffusion part by taking into account also mixed classical-stochastic integrals. We show that the relation of the applied step-sizes to the smallness of the noise is essential to decide whether the new methods are worth to be used. Simulation results illustrate the theoretical findings.
Files in this item
Thumbnail
10.pdf — Adobe PDF — 205.0 Kb
MD5: 6cca89acae01cf67f754b298b58fb852
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2563
Permanent URL
https://doi.org/10.18452/2563
HTML
<a href="https://doi.org/10.18452/2563">https://doi.org/10.18452/2563</a>