Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-02Buch DOI: 10.18452/2564
Managing the drift-off in numerical index-2 differential algebraic equations by projected defect corrections
März, Roswitha
When integrating index-2 differential-algebraic equations, the given constraint may be failed to be met due to the integration method itself and also due to numerical defects in the realization. This so-called drift-off gives rise to bad instabilities. In 1991 Ascher and Petzold proposed to manage the drift-off caused by symmetric implicit Runge-Kutta methods in Hessenberg systems by means of backprojections onto the constraint. In the present paper, this nice idea is generalized and analyzed in some detail for general index-2 differential-algebraic equations and, in particular, for quasilinear equations a(x,t)x' + g(x,t) = 0, as they arise in applications. Now the constraint under consideration is only implicitly given and the backprojection turns out to be rather a projected defect correction.
Files in this item
Thumbnail
32.pdf — Adobe PDF — 281.7 Kb
MD5: 13048c00b21264a7b1a237e86fe8a00c
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2564
Permanent URL
https://doi.org/10.18452/2564
HTML
<a href="https://doi.org/10.18452/2564">https://doi.org/10.18452/2564</a>