Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-08-05Buch DOI: 10.18452/2568
A Convergent Adaptive Finite Element Method For The Primal Problem Of Elastoplasticity
Carstensen, Carsten
Orlando, Antonio
Valdman, Jan
The boundary value problem representing one time step of the primal formulation of elastoplasticity with positive hardening leads to a variational inequality of the second kind with some non-differentiable functional. This paper establishes an adaptive finite element algorithm for the solution of this variational inequality that yields the energy reduction and, up to higher order terms, the $R$-linear convergence of the stresses with respect to the number of loops. Applications include several plasticity models: linear isotropic-kinematic hardening, linear kinematic hardening, and multisurface plasticity as model for nonlinear hardening laws. For perfect plasticity the adaptive algorithm yields strong convergence of the stresses. Numerical examples confirm an improved linear convergence of the stresses. Numerical examples confirm an improved linear convergence rate and study the performance of the algorithm in comparison with the more frequently applied maximum refinement rule.
Files in this item
Thumbnail
12.pdf — Adobe PDF — 1.229 Mb
MD5: c667f79e68c9ecc2c8abf984af397301
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2568
Permanent URL
https://doi.org/10.18452/2568
HTML
<a href="https://doi.org/10.18452/2568">https://doi.org/10.18452/2568</a>