Show simple item record

2005-08-05Buch DOI: 10.18452/2568
A Convergent Adaptive Finite Element Method For The Primal Problem Of Elastoplasticity
dc.contributor.authorCarstensen, Carsten
dc.contributor.authorOrlando, Antonio
dc.contributor.authorValdman, Jan
dc.date.accessioned2017-06-15T17:34:51Z
dc.date.available2017-06-15T17:34:51Z
dc.date.created2005-11-02
dc.date.issued2005-08-05
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3220
dc.description.abstractThe boundary value problem representing one time step of the primal formulation of elastoplasticity with positive hardening leads to a variational inequality of the second kind with some non-differentiable functional. This paper establishes an adaptive finite element algorithm for the solution of this variational inequality that yields the energy reduction and, up to higher order terms, the $R$-linear convergence of the stresses with respect to the number of loops. Applications include several plasticity models: linear isotropic-kinematic hardening, linear kinematic hardening, and multisurface plasticity as model for nonlinear hardening laws. For perfect plasticity the adaptive algorithm yields strong convergence of the stresses. Numerical examples confirm an improved linear convergence of the stresses. Numerical examples confirm an improved linear convergence rate and study the performance of the algorithm in comparison with the more frequently applied maximum refinement rule.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectVariational inequality of second kindeng
dc.subjectelastoplasticityeng
dc.subjectconforming finite element methodeng
dc.subjecta posteriori error estimateseng
dc.subjectadaptive finite element methodseng
dc.subjecterror reductioneng
dc.subject.ddc510 Mathematik
dc.titleA Convergent Adaptive Finite Element Method For The Primal Problem Of Elastoplasticity
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10051880
dc.identifier.doihttp://dx.doi.org/10.18452/2568
local.edoc.pages39
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year2005
dc.identifier.zdb2075199-0
bua.series.namePreprints aus dem Institut für Mathematik
bua.series.issuenumber2005,12

Show simple item record