Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-02Buch DOI: 10.18452/2578
Polyhedral Risk Measures in Stochastic Programming
Eichhorn, Andreas
Römisch, Werner
Stochastic programs that do not only minimize expected cost but also take into account risk are of great interest in many application fields. We consider stochastic programs with risk measures in the objective and study stability properties as well as decomposition structures. Thereby we place emphasis on dynamic models, i.e., multistage stochastic programs with multiperiod risk measures. In this context, we define the class of polyhedral risk measures such that stochastic programs with risk measures taken from this class have favorable properties. polyhedral risk measures are defined as optimal values of certain linear stochastic programs where the arguments of the risk measure appear on the right-hand side of the dynamic constraints. Dual representations for polyhedral risk measures are derived and used to deduce criteria for convexity and coherence. As examples of polyhedral risk measures we propose multiperiod extensions of the conditional-Value-at-Risk.
Files in this item
Thumbnail
5.pdf — Adobe PDF — 380.5 Kb
MD5: 96c208013a500ca9c5165368efb6620a
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2578
Permanent URL
https://doi.org/10.18452/2578
HTML
<a href="https://doi.org/10.18452/2578">https://doi.org/10.18452/2578</a>