Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-03Buch DOI: 10.18452/2582
A modified standard embedding for linear complementarity problems
Allonso, Sira Allende
Guddat, Jürgen
Nowack, Dieter
We propose a modified standard embedding for solving the linear complementarity problem (LCP). This embedding is a special one-parametric optimization problem $P(t), t\in [0,1]$. Under the conditions (A3) (the Mangasarian-Fromovitz Constraint Qualification is satisfied for the feasible set $M(t)$ depending on the parameter $t$), (A4) ($P(t)$ is Jongen-Jonker- Twilt regular) and two technical assumptions (A1) and (A2) there exists a path in the set of stationary points connecting the chosen starting point for $P(0)$ with a certain point for $P(1)$, and this point is a solution of the (LCP). This path may include types of singularities, namely points of Type 2 and Type 3 in the class of Jongen-Jonker-Twilt for $t\in [0,1)$. We can follow this path by using pathfollowing procedures (contained in the program package PAFO). In case that the condition (A3) is not satisfied, also points of Type 4 and 5 may appear. The assumption (A4) will be justified by a theorem. Illustrative examples are presented.
Files in this item
Thumbnail
9.pdf — Adobe PDF — 347.3 Kb
MD5: 7ccdf234facdae1e1d76690dda7fd7b6
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2582
Permanent URL
https://doi.org/10.18452/2582
HTML
<a href="https://doi.org/10.18452/2582">https://doi.org/10.18452/2582</a>