Show simple item record

2005-11-03Buch DOI: 10.18452/2582
A modified standard embedding for linear complementarity problems
dc.contributor.authorAllonso, Sira Allende
dc.contributor.authorGuddat, Jürgen
dc.contributor.authorNowack, Dieter
dc.date.accessioned2017-06-15T17:37:37Z
dc.date.available2017-06-15T17:37:37Z
dc.date.created2005-11-03
dc.date.issued2005-11-03
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3234
dc.description.abstractWe propose a modified standard embedding for solving the linear complementarity problem (LCP). This embedding is a special one-parametric optimization problem $P(t), t\in [0,1]$. Under the conditions (A3) (the Mangasarian-Fromovitz Constraint Qualification is satisfied for the feasible set $M(t)$ depending on the parameter $t$), (A4) ($P(t)$ is Jongen-Jonker- Twilt regular) and two technical assumptions (A1) and (A2) there exists a path in the set of stationary points connecting the chosen starting point for $P(0)$ with a certain point for $P(1)$, and this point is a solution of the (LCP). This path may include types of singularities, namely points of Type 2 and Type 3 in the class of Jongen-Jonker-Twilt for $t\in [0,1)$. We can follow this path by using pathfollowing procedures (contained in the program package PAFO). In case that the condition (A3) is not satisfied, also points of Type 4 and 5 may appear. The assumption (A4) will be justified by a theorem. Illustrative examples are presented.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectpathfollowing methodseng
dc.subjectMangasarian-Fromovitz Constraint Qualificationeng
dc.subjectLinear complementarity problemeng
dc.subjectstandard embeddingeng
dc.subjectJongen-Jonker-Twilt regularityeng
dc.subject.ddc510 Mathematik
dc.titleA modified standard embedding for linear complementarity problems
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10052166
dc.identifier.doihttp://dx.doi.org/10.18452/2582
local.edoc.pages23
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year2004
dc.identifier.zdb2075199-0
bua.series.namePreprints aus dem Institut für Mathematik
bua.series.issuenumber2004,9

Show simple item record